Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=arcsin(-4x)
Evaluate 
(dy)/(dx) at 
x=-(1)/(6).
Use an exact expression.

y=arcsin(4x) y=\arcsin (-4 x) \newlineEvaluate dydx \frac{d y}{d x} at x=16 x=-\frac{1}{6} .\newlineUse an exact expression.

Full solution

Q. y=arcsin(4x) y=\arcsin (-4 x) \newlineEvaluate dydx \frac{d y}{d x} at x=16 x=-\frac{1}{6} .\newlineUse an exact expression.
  1. Apply Chain Rule: To find the derivative of y=arcsin(4x)y=\arcsin(-4x), we use the chain rule. The derivative of arcsin(u)\arcsin(u) with respect to uu is 11u2\frac{1}{\sqrt{1-u^2}}, so we need to multiply that by the derivative of 4x-4x with respect to xx, which is 4-4.dydx=(11(4x)2)(4)\frac{dy}{dx} = \left(\frac{1}{\sqrt{1-(-4x)^2}}\right) \cdot (-4)
  2. Simplify Derivative: Simplify the expression inside the square root and the derivative becomes: dydx=4116x2\frac{dy}{dx} = \frac{-4}{\sqrt{1-16x^2}}
  3. Evaluate at x=(16)x=-(\frac{1}{6}): Now we evaluate the derivative at x=(16)x=-(\frac{1}{6}).
    dydx\frac{dy}{dx} at x=(16)x=-(\frac{1}{6}) = 4116(16)2\frac{-4}{\sqrt{1-16(-\frac{1}{6})^2}}
  4. Simplify Inside Square Root: Simplify the expression inside the square root: dydx\frac{dy}{dx} at x=(16)=4116(136)x=-\left(\frac{1}{6}\right) = \frac{-4}{\sqrt{1-16\left(\frac{1}{36}\right)}}
  5. Further Simplify Expression: Further simplify the expression: dydx\frac{dy}{dx} at x=(16)=41(1636)x=-\left(\frac{1}{6}\right) = \frac{-4}{\sqrt{1-\left(\frac{16}{36}\right)}}
  6. Simplify Fraction: Simplify the fraction 1636\frac{16}{36} to 49\frac{4}{9}:\newlinedydx\frac{dy}{dx} at x=(16)=41(49)x=-\left(\frac{1}{6}\right) = \frac{-4}{\sqrt{1-\left(\frac{4}{9}\right)}}
  7. Subtract from 11: Subtract the fraction from 11: dydx\frac{dy}{dx} at x=(16)=4(99)(49)x=-\left(\frac{1}{6}\right) = \frac{-4}{\sqrt{\left(\frac{9}{9}\right)-\left(\frac{4}{9}\right)}}
  8. Simplify Subtraction: Simplify the subtraction inside the square root: dydx\frac{dy}{dx} at x=(16)=459x=-(\frac{1}{6}) = \frac{-4}{\sqrt{\frac{5}{9}}}
  9. Take Square Root: Take the square root of the fraction: dydx\frac{dy}{dx} at x=(16)=45/3x=-\left(\frac{1}{6}\right) = \frac{-4}{\sqrt{5}/3}
  10. Multiply by 33: Multiply the numerator and denominator by 33 to get rid of the fraction in the denominator:\newlinedydx\frac{dy}{dx} at x=(16)x=-(\frac{1}{6}) = 4×35\frac{-4\times 3}{\sqrt{5}}
  11. Multiply by 33: Multiply the numerator and denominator by 33 to get rid of the fraction in the denominator:\newlinedydx\frac{dy}{dx} at x=(16)x=-(\frac{1}{6}) = 4×35\frac{-4\times 3}{\sqrt{5}} Simplify the multiplication:\newlinedydx\frac{dy}{dx} at x=(16)x=-(\frac{1}{6}) = 125\frac{-12}{\sqrt{5}}

More problems from Find derivatives of inverse trigonometric functions