Q. y=arccos(−5x)Evaluate dxdy at x=2.Use an exact expression.
Find Derivative of y=arccos(−5x):</b>First,let′sfindthederivativeof$y=arccos(−5x). Using the chain rule, the derivative of arccos(u) is −1−u21 times the derivative of u.
Apply Chain Rule: Let u=−5x. Then, dxdu=−51.
Plug in u and Simplify: Now, plug u into the derivative of arccos(u) to get dxdy=−1−(−5x)21⋅(−51).
Evaluate at x=2: Simplify the expression: dxdy=−1−(25x2)1⋅(−51).
Calculate Inside Square Root: Now, evaluate dxdy at x=2. Plug x=2 into the derivative: dxdy=−1−(2522)1×(−51).
Take Square Root: Calculate the inside of the square root: 1−(22)/(25)=1−(4)/(25)=1−4/25=21/25.
Multiply by −51: Now, take the square root: 2521=521.
Multiply by −51: Now, take the square root: 2521=521.Finally, multiply by −51: dxdy=−21/51×(−51)=521/51=211.
More problems from Find derivatives of inverse trigonometric functions