Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=arccos(-(x)/(3))

(dy)/(dx)=?
Choose 1 answer:
(A) 
(1)/(3sqrt(1-(x^(2))/(9)))
(B) 
(-1)/(3sqrt(1-(x^(2))/(9)))
(c) 
(1)/(3(1-(x^(2))/(9)))
(ㄷ) 
(-1)/(3(1-(x^(2))/(9)))

y=arccos(x3) y=\arccos \left(-\frac{x}{3}\right) \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 131x29 \frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}} \newline(B) 131x29 \frac{-1}{3 \sqrt{1-\frac{x^{2}}{9}}} \newline(C) 13(1x29) \frac{1}{3\left(1-\frac{x^{2}}{9}\right)} \newline(D) 13(1x29) \frac{-1}{3\left(1-\frac{x^{2}}{9}\right)}

Full solution

Q. y=arccos(x3) y=\arccos \left(-\frac{x}{3}\right) \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 131x29 \frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}} \newline(B) 131x29 \frac{-1}{3 \sqrt{1-\frac{x^{2}}{9}}} \newline(C) 13(1x29) \frac{1}{3\left(1-\frac{x^{2}}{9}\right)} \newline(D) 13(1x29) \frac{-1}{3\left(1-\frac{x^{2}}{9}\right)}
  1. Write Derivative of arccos(u): First, let's write down the derivative of arccos(u)\text{arccos}(u) with respect to uu, which is 11u2-\frac{1}{\sqrt{1-u^2}}.
  2. Apply Chain Rule with u=x3u=-\frac{x}{3}: Now, we need to apply the chain rule. Let u=x3u=-\frac{x}{3}. The derivative of uu with respect to xx is 13-\frac{1}{3}.
  3. Calculate Derivative of y: So, the derivative of yy with respect to xx is the derivative of arccos(u)\arccos(u) times the derivative of uu with respect to xx, which is (1/1u2)×(1/3)(-1/\sqrt{1-u^2}) \times (-1/3).
  4. Substitute uu back in: Substitute uu back in to get (1/1(x3)2)(13)(-1/\sqrt{1-(-\frac{x}{3})^2}) * (-\frac{1}{3}).
  5. Simplify the Expression: Simplify the expression to get (11x29(-\frac{1}{\sqrt{1-\frac{x^2}{9}}} * 13-\frac{1}{3}.
  6. Final Result: The negatives cancel out, so we get (1)/(31(x2)/(9))(1)/(3\sqrt{1-(x^2)/(9)}).

More problems from Find derivatives of using multiple formulae