Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^(3)+2y^(2)-xy=2
Find the value of 
(dy)/(dx) at the point 
(0,-1).
Choose 1 answer:
(A) 4
(B) 
-(1)/(4)
(C) 
(1)/(4)
(D) -4

x3+2y2xy=2 x^{3}+2 y^{2}-x y=2 \newlineFind the value of dydx \frac{d y}{d x} at the point (0,1) (0,-1) .\newlineChoose 11 answer:\newline(A) 44\newline(B) 14 -\frac{1}{4} \newline(C) 14 \frac{1}{4} \newline(D) 4-4

Full solution

Q. x3+2y2xy=2 x^{3}+2 y^{2}-x y=2 \newlineFind the value of dydx \frac{d y}{d x} at the point (0,1) (0,-1) .\newlineChoose 11 answer:\newline(A) 44\newline(B) 14 -\frac{1}{4} \newline(C) 14 \frac{1}{4} \newline(D) 4-4
  1. Differentiate Implicitly: Implicitly differentiate both sides of the equation with respect to xx.ddx(x3+2y2xy)=ddx(2)\frac{d}{dx}(x^{3}+2y^{2}-xy) = \frac{d}{dx}(2)
  2. Differentiate Terms: Differentiate each term separately. ddx(x3)=3x2\frac{d}{dx}(x^{3}) = 3x^{2}, ddx(2y2)=4ydydx\frac{d}{dx}(2y^{2}) = 4y\frac{dy}{dx}, ddx(xy)=yxdydx\frac{d}{dx}(-xy) = -y - x\frac{dy}{dx}, ddx(2)=0\frac{d}{dx}(2) = 0
  3. Combine Derivatives: Combine the derivatives to form the equation. 3x2+4ydydxyxdydx=03x^{2} + 4y\frac{dy}{dx} - y - x\frac{dy}{dx} = 0
  4. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx}.4ydydxxdydx=y3x24y\frac{dy}{dx} - x\frac{dy}{dx} = y - 3x^{2}dydx(4yx)=y3x2\frac{dy}{dx}(4y - x) = y - 3x^{2}dydx=y3x24yx\frac{dy}{dx} = \frac{y - 3x^{2}}{4y - x}
  5. Plug in Point: Plug in the point (0,1)(0,-1) into the equation.\newline(dydx)=((1)3(0)2)(4(1)0)(\frac{dy}{dx}) = \frac{((-1) - 3(0)^{2})}{(4(-1) - 0)}\newline(dydx)=(1)(4)(\frac{dy}{dx}) = \frac{(-1)}{(-4)}\newline(dydx)=14(\frac{dy}{dx}) = \frac{1}{4}

More problems from Find derivatives of using multiple formulae