Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^(2)-3xy+y^(2)=1
Find the value of 
(dy)/(dx) at the point 
(1,0).
Choose 1 answer:
(A) 
-(2)/(3)
(B) 
(2)/(3)
(C) 1
(D) -1

x23xy+y2=1 x^{2}-3 x y+y^{2}=1 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,0) (1,0) .\newlineChoose 11 answer:\newline(A) 23 -\frac{2}{3} \newline(B) 23 \frac{2}{3} \newline(C) 11\newline(D) 1-1

Full solution

Q. x23xy+y2=1 x^{2}-3 x y+y^{2}=1 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,0) (1,0) .\newlineChoose 11 answer:\newline(A) 23 -\frac{2}{3} \newline(B) 23 \frac{2}{3} \newline(C) 11\newline(D) 1-1
  1. Differentiate Equation: Differentiate both sides of the equation with respect to xx using implicit differentiation.ddx(x23xy+y2)=ddx(1)\frac{d}{dx}(x^2 - 3xy + y^2) = \frac{d}{dx}(1)
  2. Apply Product Rule: Apply the product rule to 3xy-3xy: ddx(3xy)=3dydxx3y\frac{d}{dx}(-3xy) = -3\frac{dy}{dx}x - 3y. So, ddx(x2)3dydxx3y+ddx(y2)=0\frac{d}{dx}(x^2) - 3\frac{dy}{dx}x - 3y + \frac{d}{dx}(y^2) = 0.
  3. Substitute Values: (ddx)(x2)=2x(\frac{d}{dx})(x^2) = 2x, and (ddx)(y2)=2y(dydx)(\frac{d}{dx})(y^2) = 2y(\frac{dy}{dx}) because yy is a function of xx. So, 2x3(dydx)x3y+2y(dydx)=02x - 3(\frac{dy}{dx})x - 3y + 2y(\frac{dy}{dx}) = 0.
  4. Simplify Equation: Now plug in the point (1,0)(1,0) into the differentiated equation.\newline2(1)3(dydx)(1)3(0)+2(0)(dydx)=02(1) - 3\left(\frac{dy}{dx}\right)(1) - 3(0) + 2(0)\left(\frac{dy}{dx}\right) = 0.
  5. Solve for dydx\frac{dy}{dx}: Simplify the equation: 23(dydx)=02 - 3\left(\frac{dy}{dx}\right) = 0.
  6. Solve for dydx\frac{dy}{dx}: Simplify the equation: 23(dydx)=02 - 3\left(\frac{dy}{dx}\right) = 0. Solve for dydx\frac{dy}{dx}: 3(dydx)=23\left(\frac{dy}{dx}\right) = 2.dydx=23\frac{dy}{dx} = \frac{2}{3}.

More problems from Find derivatives of using multiple formulae