Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
x
2
−
3
x
y
+
y
2
=
1
x^{2}-3 x y+y^{2}=1
x
2
−
3
x
y
+
y
2
=
1
\newline
Find the value of
d
y
d
x
\frac{d y}{d x}
d
x
d
y
at the point
(
1
,
0
)
(1,0)
(
1
,
0
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
3
-\frac{2}{3}
−
3
2
\newline
(B)
2
3
\frac{2}{3}
3
2
\newline
(C)
1
1
1
\newline
(D)
−
1
-1
−
1
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
x
2
−
3
x
y
+
y
2
=
1
x^{2}-3 x y+y^{2}=1
x
2
−
3
x
y
+
y
2
=
1
\newline
Find the value of
d
y
d
x
\frac{d y}{d x}
d
x
d
y
at the point
(
1
,
0
)
(1,0)
(
1
,
0
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
3
-\frac{2}{3}
−
3
2
\newline
(B)
2
3
\frac{2}{3}
3
2
\newline
(C)
1
1
1
\newline
(D)
−
1
-1
−
1
Differentiate Equation:
Differentiate both sides of the equation with respect to
x
x
x
using implicit differentiation.
d
d
x
(
x
2
−
3
x
y
+
y
2
)
=
d
d
x
(
1
)
\frac{d}{dx}(x^2 - 3xy + y^2) = \frac{d}{dx}(1)
d
x
d
(
x
2
−
3
x
y
+
y
2
)
=
d
x
d
(
1
)
Apply Product Rule:
Apply the product rule to
−
3
x
y
-3xy
−
3
x
y
:
d
d
x
(
−
3
x
y
)
=
−
3
d
y
d
x
x
−
3
y
\frac{d}{dx}(-3xy) = -3\frac{dy}{dx}x - 3y
d
x
d
(
−
3
x
y
)
=
−
3
d
x
d
y
x
−
3
y
. So,
d
d
x
(
x
2
)
−
3
d
y
d
x
x
−
3
y
+
d
d
x
(
y
2
)
=
0
\frac{d}{dx}(x^2) - 3\frac{dy}{dx}x - 3y + \frac{d}{dx}(y^2) = 0
d
x
d
(
x
2
)
−
3
d
x
d
y
x
−
3
y
+
d
x
d
(
y
2
)
=
0
.
Substitute Values:
(
d
d
x
)
(
x
2
)
=
2
x
(\frac{d}{dx})(x^2) = 2x
(
d
x
d
)
(
x
2
)
=
2
x
, and
(
d
d
x
)
(
y
2
)
=
2
y
(
d
y
d
x
)
(\frac{d}{dx})(y^2) = 2y(\frac{dy}{dx})
(
d
x
d
)
(
y
2
)
=
2
y
(
d
x
d
y
)
because
y
y
y
is a function of
x
x
x
. So,
2
x
−
3
(
d
y
d
x
)
x
−
3
y
+
2
y
(
d
y
d
x
)
=
0
2x - 3(\frac{dy}{dx})x - 3y + 2y(\frac{dy}{dx}) = 0
2
x
−
3
(
d
x
d
y
)
x
−
3
y
+
2
y
(
d
x
d
y
)
=
0
.
Simplify Equation:
Now plug in the point
(
1
,
0
)
(1,0)
(
1
,
0
)
into the differentiated equation.
\newline
2
(
1
)
−
3
(
d
y
d
x
)
(
1
)
−
3
(
0
)
+
2
(
0
)
(
d
y
d
x
)
=
0
2(1) - 3\left(\frac{dy}{dx}\right)(1) - 3(0) + 2(0)\left(\frac{dy}{dx}\right) = 0
2
(
1
)
−
3
(
d
x
d
y
)
(
1
)
−
3
(
0
)
+
2
(
0
)
(
d
x
d
y
)
=
0
.
Solve for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
:
Simplify the equation:
2
−
3
(
d
y
d
x
)
=
0
2 - 3\left(\frac{dy}{dx}\right) = 0
2
−
3
(
d
x
d
y
)
=
0
.
Solve for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
:
Simplify the equation:
2
−
3
(
d
y
d
x
)
=
0
2 - 3\left(\frac{dy}{dx}\right) = 0
2
−
3
(
d
x
d
y
)
=
0
. Solve for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
:
3
(
d
y
d
x
)
=
2
3\left(\frac{dy}{dx}\right) = 2
3
(
d
x
d
y
)
=
2
.
d
y
d
x
=
2
3
\frac{dy}{dx} = \frac{2}{3}
d
x
d
y
=
3
2
.
More problems from Find derivatives of using multiple formulae
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant