Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^(2)-3xy+y^(2)=1
Find the value of 
(dy)/(dx) at the point 
(1,0).
Choose 1 answer:
(A) 
(2)/(3)
(B) 1
(C) 
-(2)/(3)
(D) -1

x23xy+y2=1 x^{2}-3 x y+y^{2}=1 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,0) (1,0) .\newlineChoose 11 answer:\newline(A) 23 \frac{2}{3} \newline(B) 11\newline(C) 23 -\frac{2}{3} \newline(D) 1-1

Full solution

Q. x23xy+y2=1 x^{2}-3 x y+y^{2}=1 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,0) (1,0) .\newlineChoose 11 answer:\newline(A) 23 \frac{2}{3} \newline(B) 11\newline(C) 23 -\frac{2}{3} \newline(D) 1-1
  1. Differentiate Equation Implicitly: Implicitly differentiate both sides of the equation with respect to xx.ddx(x23xy+y2)=ddx(1)\frac{d}{dx}(x^{2}-3xy+y^{2}) = \frac{d}{dx}(1)
  2. Apply Product Rule for 3xy-3xy: Use the product rule for 3xy-3xy: ddx(3xy)=3dydxx3y\frac{d}{dx}(-3xy) = -3\frac{dy}{dx}x - 3y. So, ddx(x2)3dydxx3y+ddx(y2)=0\frac{d}{dx}(x^{2}) - 3\frac{dy}{dx}x - 3y + \frac{d}{dx}(y^{2}) = 0
  3. Differentiate x2x^{2} and y2y^{2}: Differentiate x2x^{2} to get 2x2x and y2y^{2} to get 2ydydx2y\frac{dy}{dx}. \newline2x3dydxx3y+2ydydx=02x - 3\frac{dy}{dx}x - 3y + 2y\frac{dy}{dx} = 0
  4. Solve for dydx\frac{dy}{dx}: Rearrange the terms to solve for dydx\frac{dy}{dx}.2x3y=3(dydx)x2y(dydx)2x - 3y = 3\left(\frac{dy}{dx}\right)x - 2y\left(\frac{dy}{dx}\right)
  5. Factor out dy/dx: Factor out dydx\frac{dy}{dx} on the right side.\newline2x3y=dydx(3x2y)2x - 3y = \frac{dy}{dx}(3x - 2y)
  6. Isolate dydx\frac{dy}{dx}: Divide both sides by (3x2y)(3x - 2y) to isolate dydx\frac{dy}{dx}.dydx=2x3y3x2y\frac{dy}{dx} = \frac{2x - 3y}{3x - 2y}
  7. Plug in Point: Plug in the point (1,0)(1,0) into the equation.\newline(dydx)=(2(1)3(0))(3(1)2(0))(\frac{dy}{dx}) = \frac{(2(1) - 3(0))}{(3(1) - 2(0))}
  8. Simplify Equation: Simplify the equation. dydx=2030\frac{dy}{dx} = \frac{2 - 0}{3 - 0}
  9. Calculate Final Value: Calculate the final value. dydx=23\frac{dy}{dx} = \frac{2}{3}

More problems from Find derivatives of using multiple formulae