Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the repeating decimal as a fraction.\newline.004004004.004004004

Full solution

Q. Write the repeating decimal as a fraction.\newline.004004004.004004004
  1. Identify Repeating Pattern: Identify the repeating pattern in the decimal.\newlinePattern identified: 0.004004004=0.004+0.000004+0.000000004+0.004004004\ldots = 0.004 + 0.000004 + 0.000000004 + \ldots
  2. Express Terms as Fractions: Express each term in the pattern as a fraction.\newline0.004004004...=0.004+0.000004+0.000000004+...0.004004004... = 0.004 + 0.000004 + 0.000000004 + ...\newline=41000+41000000+41000000000+...= \frac{4}{1000} + \frac{4}{1000000} + \frac{4}{1000000000} + ...
  3. Recognize Geometric Series: Recognize that the series 41000+41000000+41000000000+\frac{4}{1000} + \frac{4}{1000000} + \frac{4}{1000000000} + \ldots forms a geometric series.\newlineFind the common ratio (r)(r) of the geometric series by dividing two consecutive terms.\newline(41000000)/(41000)=41000000×10004=11000(\frac{4}{1000000}) / (\frac{4}{1000}) = \frac{4}{1000000} \times \frac{1000}{4} = \frac{1}{1000}\newlineCommon Ratio (r):11000(r): \frac{1}{1000}
  4. Write as Fraction: Write the repeating decimal as a fraction using the formula for the sum of an infinite geometric series, which is a1/(1r)a_1 / (1 - r), where a1a_1 is the first term.\newlineSubstitute a1=41000a_1 = \frac{4}{1000} and r=11000r = \frac{1}{1000} into the formula.\newline(41000)/(111000)=(41000)/(9991000)=41000×1000999(\frac{4}{1000}) / (1 - \frac{1}{1000}) = (\frac{4}{1000}) / (\frac{999}{1000}) = \frac{4}{1000} \times \frac{1000}{999}
  5. Simplify Fraction: Simplify the fraction. \newline41000×1000999=4999\frac{4}{1000} \times \frac{1000}{999} = \frac{4}{999}\newlineSo, 0.004004004=49990.004004004\ldots = \frac{4}{999}

More problems from Write a repeating decimal as a fraction