Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an equation for an ellipse centered at the origin, which has foci at 
(+-sqrt3,0) and co-vertices at 
(0,+-9).

Write an equation for an ellipse centered at the origin, which has foci at (±3,0) ( \pm \sqrt{3}, 0) and co-vertices at (0,±9) (0, \pm 9) .

Full solution

Q. Write an equation for an ellipse centered at the origin, which has foci at (±3,0) ( \pm \sqrt{3}, 0) and co-vertices at (0,±9) (0, \pm 9) .
  1. Ellipse Orientation: We have:\newlineFoci: (±3,0)(\pm\sqrt{3}, 0)\newlineCo-vertices: (0,±9)(0, \pm9)\newlineChoose the orientation of the ellipse.\newlineSince the foci are on the x-axis, the ellipse is horizontal.
  2. Finding c: We have:\newlineCenter (h,k):(0,0)(h, k): (0, 0)\newlineFoci: (±3,0)(\pm\sqrt{3}, 0)\newlineIdentify the value of cc (distance from center to foci).\newlinec=(30)2+(00)2c = \sqrt{(\sqrt{3} - 0)^2 + (0 - 0)^2}\newline=3= \sqrt{3}
  3. Finding bb: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineCo-vertices: (0,±9)(0, \pm 9)\newlineIdentify the value of bb (distance from center to co-vertices).\newlineb=((00)2+(90)2)b = \sqrt{((0 - 0)^2 + (9 - 0)^2)}\newline=(81)= \sqrt{(81)}\newline=9= 9
  4. Finding aa: We know the relationship between aa, bb, and cc for an ellipse is c2=a2b2c^2 = a^2 - b^2. We already have c=3c = \sqrt{3} and b=9b = 9. Now we need to find aa. c2=a2b2c^2 = a^2 - b^2 (3)2=a292(\sqrt{3})^2 = a^2 - 9^2 aa00 aa11 aa22 aa33 aa44
  5. Standard Form of the Ellipse: We know:\newline(h,k)=(0,0)(h, k) = (0, 0)\newlinea=221a = 2\sqrt{21}\newlineb=9b = 9\newlineWhat would be the standard form of the ellipse?\newline(x0)2(221)2+(y0)292=1\frac{(x - 0)^2}{(2\sqrt{21})^2} + \frac{(y - 0)^2}{9^2} = 1\newlinex2(221)2+y292=1\frac{x^2}{(2\sqrt{21})^2} + \frac{y^2}{9^2} = 1\newlinex2421+y281=1\frac{x^2}{4\cdot21} + \frac{y^2}{81} = 1\newlinex284+y281=1\frac{x^2}{84} + \frac{y^2}{81} = 1

More problems from Write equations of ellipses in standard form using properties