Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an equation for an ellipse centered at the origin, which has foci at 
(0,+-sqrt14) and co-vertices at 
(+-sqrt2,0).

Write an equation for an ellipse centered at the origin, which has foci at (0,±14) (0, \pm \sqrt{14}) and co-vertices at (±2,0) ( \pm \sqrt{2}, 0) .

Full solution

Q. Write an equation for an ellipse centered at the origin, which has foci at (0,±14) (0, \pm \sqrt{14}) and co-vertices at (±2,0) ( \pm \sqrt{2}, 0) .
  1. Ellipse Orientation: We have:\newlineFoci: (0,±14)(0, \pm\sqrt{14})\newlineCo-vertices: (±2,0)(\pm\sqrt{2}, 0)\newlineChoose the orientation of the ellipse.\newlineSince the foci are along the y-axis, the ellipse is vertical.
  2. Identifying cc: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineFoci: (0,±14)(0, \pm\sqrt{14})\newlineIdentify the value of cc.\newlinec=14c = \sqrt{14}
  3. Identifying bb: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineCo-vertices: (±2,0)(\pm\sqrt{2}, 0)\newlineIdentify the value of bb.\newlineb=2b = \sqrt{2}
  4. Calculating a2a^2: We know:\newlinec2=a2b2c^2 = a^2 - b^2\newlineWe have c=14c = \sqrt{14} and b=2b = \sqrt{2}.\newlineCalculate the value of a2a^2.\newlinea2=c2+b2a^2 = c^2 + b^2\newlinea2=(14)2+(2)2a^2 = (\sqrt{14})^2 + (\sqrt{2})^2\newlinea2=14+2a^2 = 14 + 2\newlinea2=16a^2 = 16
  5. Finding aa: Find the value of aa.
    a=a2a = \sqrt{a^2}
    a=16a = \sqrt{16}
    a=4a = 4
  6. Standard Form of the Ellipse: We know:\newline(h,k)=(0,0)(h, k) = (0, 0)\newlinea=4a = 4\newlineb=2b = \sqrt{2}\newlineWhat would be the standard form of the ellipse?\newlineSince the ellipse is vertical, the a2a^2 term will be under the y2y^2 term.\newline(xh)2b2+(yk)2a2=1\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1\newline(x0)2(2)2+(y0)242=1\frac{(x - 0)^2}{(\sqrt{2})^2} + \frac{(y - 0)^2}{4^2} = 1\newlinex22+y216=1\frac{x^2}{2} + \frac{y^2}{16} = 1

More problems from Write equations of ellipses in standard form using properties