Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an equation for an ellipse centered at the origin, which has foci at 
(+-sqrt13,0) and co-vertices at 
(0,+-11).

Write an equation for an ellipse centered at the origin, which has foci at (±13,0) ( \pm \sqrt{13}, 0) and co-vertices at (0,±11) (0, \pm 11) .

Full solution

Q. Write an equation for an ellipse centered at the origin, which has foci at (±13,0) ( \pm \sqrt{13}, 0) and co-vertices at (0,±11) (0, \pm 11) .
  1. Identify Orientation: We have:\newlineFoci: (±13,0)(\pm\sqrt{13}, 0)\newlineCo-vertices: (0,±11)(0, \pm11)\newlineChoose the orientation of the ellipse.\newlineSince the foci are on the x-axis, the ellipse is horizontal.
  2. Identify Center and Foci: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineFoci: (±13,0)(\pm\sqrt{13}, 0)\newlineIdentify the value of cc.\newlinec=13c = \sqrt{13}
  3. Identify Co-vertices: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineCo-vertices: (0,±11)(0, \pm 11)\newlineIdentify the value of bb.\newlineb=11b = 11
  4. Calculate Value of a: We know the relationship between aa, bb, and cc in an ellipse is c2=a2b2c^2 = a^2 - b^2. We already have c=13c = \sqrt{13} and b=11b = 11. Calculate the value of aa. a2=c2+b2a^2 = c^2 + b^2 a2=(13)2+112a^2 = (\sqrt{13})^2 + 11^2 a2=13+121a^2 = 13 + 121 bb00 bb11
  5. Standard Form of Ellipse: We know:\newline(h,k)=(0,0)(h, k) = (0, 0)\newlinea=134a = \sqrt{134}\newlineb=11b = 11\newlineWhat would be the standard form of the ellipse?\newline(xh)2a2+(yk)2b2=1\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\newline(x0)2(134)2+(y0)2112=1\frac{(x - 0)^2}{(\sqrt{134})^2} + \frac{(y - 0)^2}{11^2} = 1\newlinex2134+y2121=1\frac{x^2}{134} + \frac{y^2}{121} = 1

More problems from Write equations of ellipses in standard form using properties