Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an equation for an ellipse centered at the origin, which has foci at 
(+-8,0) and vertices at 
(+-17,0).

Write an equation for an ellipse centered at the origin, which has foci at (±8,0) ( \pm 8,0) and vertices at (±17,0) ( \pm 17,0) .

Full solution

Q. Write an equation for an ellipse centered at the origin, which has foci at (±8,0) ( \pm 8,0) and vertices at (±17,0) ( \pm 17,0) .
  1. Identify Orientation: We have:\newlineFoci: (±8,0)(\pm 8, 0)\newlineVertices: (±17,0)(\pm 17, 0)\newlineChoose the orientation of the ellipse.\newlineSince the foci and vertices are on the xx-axis, the ellipse is horizontal.
  2. Find Value of aa: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineVertices: (±17,0)(\pm 17, 0)\newlineIdentify the value of aa (the distance from the center to a vertex).\newlinea=±170a = |\pm 17 - 0|\newline= 1717
  3. Find Value of c: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineFoci: (±8,0)(\pm8, 0)\newlineIdentify the value of cc (the distance from the center to a focus).\newlinec=±80c = |\pm8 - 0|\newline= 88
  4. Use Relationship to Find bb: We know:\newlinea=17a = 17\newlinec=8c = 8\newlineUse the relationship c2=a2b2c^2 = a^2 - b^2 to find bb (the distance from the center to a co-vertex).\newlinec2=a2b2c^2 = a^2 - b^2\newline82=172b28^2 = 17^2 - b^2\newline64=289b264 = 289 - b^2\newlineb2=28964b^2 = 289 - 64\newlineb2=225b^2 = 225\newlinea=17a = 1700\newlinea=17a = 1711
  5. Write Standard Form: We know:\newline(h,k)=(0,0)(h, k) = (0, 0)\newlinea=17a = 17\newlineb=15b = 15\newlineWrite the standard form of the ellipse.\newline(xh)2a2+(yk)2b2=1\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\newline(x0)2172+(y0)2152=1\frac{(x - 0)^2}{17^2} + \frac{(y - 0)^2}{15^2} = 1\newlinex2172+y2152=1\frac{x^2}{17^2} + \frac{y^2}{15^2} = 1\newlinex2289+y2225=1\frac{x^2}{289} + \frac{y^2}{225} = 1

More problems from Write equations of ellipses in standard form using properties