Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an equation for an ellipse centered at the origin, which has foci at 
(0,+-3) and co-vertices at 
(+-2,0).

Write an equation for an ellipse centered at the origin, which has foci at (0,±3) (0, \pm 3) and co-vertices at (±2,0) ( \pm 2,0) .

Full solution

Q. Write an equation for an ellipse centered at the origin, which has foci at (0,±3) (0, \pm 3) and co-vertices at (±2,0) ( \pm 2,0) .
  1. Ellipse Orientation: We have:\newlineFoci: (0,±3)(0, \pm 3)\newlineCo-vertices: (±2,0)(\pm 2, 0)\newlineChoose the orientation of the ellipse.\newlineSince the foci are on the y-axis, the ellipse is vertical.
  2. Finding cc: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineFoci: (0,±3)(0, \pm 3)\newlineIdentify the value of cc (distance from center to foci).\newlinec=(00)2+(30)2c = \sqrt{(0 - 0)^2 + (3 - 0)^2}\newline= \sqrt{00^22 + 33^22}\)\newline= \sqrt{99}\)\newline= 33
  3. Finding bb: We have:\newlineCenter (h,k)(h, k): (0,0)(0, 0)\newlineCo-vertices: (±2,0)(\pm 2, 0)\newlineIdentify the value of bb (distance from center to co-vertices).\newlineb=(20)2+(00)2b = \sqrt{(2 - 0)^2 + (0 - 0)^2}\newline=22+02= \sqrt{2^2 + 0^2}\newline=4= \sqrt{4}\newline=2= 2
  4. Finding aa: We know the relationship between aa, bb, and cc for an ellipse is c2=a2b2c^2 = a^2 - b^2. We have already found c=3c = 3 and b=2b = 2. Now we need to find aa. c2=a2b2c^2 = a^2 - b^2 32=a2223^2 = a^2 - 2^2 aa00 aa11 aa22 aa33
  5. Standard Form of the Ellipse: We know:\newline(h,k)=(0,0)(h, k) = (0, 0)\newlinea=13a = \sqrt{13}\newlineb=2b = 2\newlineWhat would be the standard form of the ellipse?\newline(x0)2b2+(y0)2a2=1\frac{(x - 0)^2}{b^2} + \frac{(y - 0)^2}{a^2} = 1\newlinex222+y213=1\frac{x^2}{2^2} + \frac{y^2}{13} = 1\newlinex24+y213=1\frac{x^2}{4} + \frac{y^2}{13} = 1

More problems from Write equations of ellipses in standard form using properties