Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an equation for an ellipse centered at the origin, which has foci at 
(0,+-2) and vertices at 
(0,+-sqrt15)

Write an equation for an ellipse centered at the origin, which has foci at (0,±2) (0, \pm 2) and vertices at (0,±15) (0, \pm \sqrt{15}) .

Full solution

Q. Write an equation for an ellipse centered at the origin, which has foci at (0,±2) (0, \pm 2) and vertices at (0,±15) (0, \pm \sqrt{15}) .
  1. Ellipse Orientation: We have:\newlineFoci: (0,±2)(0, \pm 2)\newlineVertices: (0,±15)(0, \pm \sqrt{15})\newlineChoose the orientation of the ellipse.\newlineSince the foci and vertices are on the y-axis, the orientation is vertical.
  2. Center and Vertex: We have:\newlineCenter (h,k):(0,0)(h, k): (0, 0)\newlineVertices: (0,±15)(0, \pm\sqrt{15})\newlineIdentify the value of aa (the distance from the center to a vertex).\newlinea=15a = \sqrt{15}
  3. Foci and Center: We have:\newlineCenter h,kh, k: 0,00, 0\newlineFoci: 0,±20, \pm 2\newlineIdentify the value of cc (the distance from the center to a focus).\newlinec=2c = 2
  4. Calculating b2b^2: We know:\newlinea2=b2+c2a^2 = b^2 + c^2 (relationship between aa, bb, and cc in an ellipse with vertical orientation)\newlineWe have a=15a = \sqrt{15} and c=2c = 2.\newlineCalculate the value of b2b^2.\newlineb2=a2c2b^2 = a^2 - c^2\newlineb2=(15)222b^2 = (\sqrt{15})^2 - 2^2\newlinea2=b2+c2a^2 = b^2 + c^200\newlinea2=b2+c2a^2 = b^2 + c^211
  5. Standard Form of Ellipse: We know:\newline(h,k)=(0,0)(h, k) = (0, 0)\newlinea=15a = \sqrt{15}\newlineb2=11b^2 = 11\newlineWhat would be the standard form of the ellipse?\newlineThe standard form of an ellipse with vertical orientation is:\newline(xh)2b2+(yk)2a2=1\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1\newlineSubstitute the values of h, k, a, and b into the equation.\newline(x0)211+(y0)2(15)2=1\frac{(x - 0)^2}{11} + \frac{(y - 0)^2}{(\sqrt{15})^2} = 1\newlinex211+y215=1\frac{x^2}{11} + \frac{y^2}{15} = 1

More problems from Write equations of ellipses in standard form using properties