Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which sign makes the statement true?\newline1.5×1031.5 \times 10^3 ?\text{?} 1.50×1031.50 \times 10^3\newlineChoices:\newline(A) >\newline(B) <\newline(C) ==

Full solution

Q. Which sign makes the statement true?\newline1.5×1031.5 \times 10^3 ?\text{?} 1.50×1031.50 \times 10^3\newlineChoices:\newline(A) >>\newline(B) <<\newline(C) ==
  1. Analyze Expressions: Analyze the given expressions.\newlineWe have 1.5×1031.5 \times 10^3 and 1.50×1031.50 \times 10^3.\newlineAre the base numbers the same or different?\newlineThe base numbers are 1.51.5 and 1.501.50, which are equivalent because the trailing zero does not change the value of the number.
  2. Compare Exponents: Compare the exponents.\newlineSince the base numbers are equivalent, we compare the exponents to determine the relationship between the two expressions.\newlineThe exponents in both expressions are 33.\newlineSince the exponents are the same, the expressions are equal.\newline1.5×103=1.50×1031.5 \times 10^3 = 1.50 \times 10^3.
  3. Choose Correct Sign: Choose the correct sign.\newlineBased on the comparison, the correct sign to make the statement true is "==".\newlineSo, 1.5×103=1.50×1031.5 \times 10^3 = 1.50 \times 10^3.

More problems from Compare numbers written in scientific notation