Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-1+4i)*(4-3i)

Multiply and simplify the following complex numbers:\newline(1+4i)(43i) (-1+4 i) \cdot(4-3 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(1+4i)(43i) (-1+4 i) \cdot(4-3 i)
  1. Distribute terms in complex numbers: Distribute each term in the first complex number by each term in the second complex number.\newline(1+4i)(43i)=(14)+(13i)+(4i4)+(4i3i)(-1+4i)*(4-3i) = (-1\cdot 4) + (-1\cdot -3i) + (4i\cdot 4) + (4i\cdot -3i)
  2. Perform multiplication for each term: Perform the multiplication for each term.\newline(1×4)=4(-1\times 4) = -4\newline(1×3i)=3i(-1\times -3i) = 3i\newline(4i×4)=16i(4i\times 4) = 16i\newline(4i×3i)=12i2(4i\times -3i) = -12i^2
  3. Simplify using i2i^2: Remember that i2=1i^2 = -1 and simplify the terms.\newline12i2=12(1)=12-12i^2 = -12*(-1) = 12
  4. Combine like terms: Combine like terms.\newline(4)+(3i)+(16i)+(12)=8+19i(-4) + (3i) + (16i) + (12) = 8 + 19i
  5. Write final answer in standard form: Write the final answer in the standard form of a complex number.\newlineThe product of the complex numbers (1+4i)(-1+4i) and (43i)(4-3i) is 8+19i8 + 19i.

More problems from Multiply numbers written in scientific notation