Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-3-2i)*(-4+2i)

Multiply and simplify the following complex numbers:\newline(32i)(4+2i) (-3-2 i) \cdot(-4+2 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(32i)(4+2i) (-3-2 i) \cdot(-4+2 i)
  1. Distribute terms in complex numbers: Distribute each term in the first complex number by each term in the second complex number.\newline(32i)(4+2i)=(3)(4)+(3)(2i)+(2i)(4)+(2i)(2i)(-3-2i)(-4+2i) = (-3)(-4) + (-3)(2i) + (-2i)(-4) + (-2i)(2i)
  2. Multiply real and imaginary parts: Multiply the real parts and the imaginary parts separately.\newline(3)(4)=12(-3)\cdot(-4) = 12 (Real part)\newline(3)(2i)=6i(-3)\cdot(2i) = -6i (Imaginary part)\newline(2i)(4)=8i(-2i)\cdot(-4) = 8i (Imaginary part)\newline(2i)(2i)=4i2(-2i)\cdot(2i) = -4i^2 (Real part, because i2=1i^2 = -1)
  3. Combine like terms: Combine like terms (real with real and imaginary with imaginary).\newlineReal parts: 12+(4i2)=124(1)=12+4=1612 + (-4i^2) = 12 - 4(-1) = 12 + 4 = 16\newlineImaginary parts: 6i+8i=2i-6i + 8i = 2i
  4. Write final answer as a complex number: Write the final answer as a complex number (a+bi)(a + bi).\newlineFinal answer: 16+2i16 + 2i

More problems from Multiply numbers written in scientific notation