Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(1+5i)*(-3-i)

Multiply and simplify the following complex numbers:\newline(1+5i)(3i) (1+5 i) \cdot(-3-i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(1+5i)(3i) (1+5 i) \cdot(-3-i)
  1. Distribute terms: Distribute each term of the first complex number by each term of the second complex number.\newline(1+5i)(3i)=1(3)+1(i)+5i(3)+5i(i)(1+5i)(-3-i) = 1(-3) + 1(-i) + 5i(-3) + 5i(-i)
  2. Multiply terms: Multiply the terms.\newline1(3)=31 \cdot (-3) = -3\newline1(i)=i1 \cdot (-i) = -i\newline5i(3)=15i5i \cdot (-3) = -15i\newline5i(i)=5i25i \cdot (-i) = 5i^2\newlineSince i2=1i^2 = -1, we replace 5i25i^2 with 5(1)5 \cdot (-1).
  3. Replace i2i^2: Combine like terms and simplify.\newline3i15i+5(1)-3 - i - 15i + 5*(-1)\newlineCombine the real parts: 3+5(1)=35=8-3 + 5*(-1) = -3 - 5 = -8\newlineCombine the imaginary parts: i15i=16i-i - 15i = -16i\newlineSo, the simplified form is 816i-8 - 16i.

More problems from Multiply numbers written in scientific notation