Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline5,18,31,44,57,70,5, 18, 31, 44, 57, 70, \ldots\newlineChoices:\newline(A) an=an1+13a_n = a_{n-1} + 13\newline(B) an=an113a_n = a_{n-1} - 13\newline(C) an=an1+an213a_n = a_{n-1} + a_{n-2} - 13\newline(D) an=185an1a_n = \frac{18}{5}a_{n-1}

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline5,18,31,44,57,70,5, 18, 31, 44, 57, 70, \ldots\newlineChoices:\newline(A) an=an1+13a_n = a_{n-1} + 13\newline(B) an=an113a_n = a_{n-1} - 13\newline(C) an=an1+an213a_n = a_{n-1} + a_{n-2} - 13\newline(D) an=185an1a_n = \frac{18}{5}a_{n-1}
  1. Sequence Type: We have the sequence: 5,18,31,44,57,70,5, 18, 31, 44, 57, 70, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: Find the common difference, dd. Two consecutive terms are 55 and 1818. 185=1318 - 5 = 13 Common difference (dd): 1313
  3. Recursive Formula: Identify the recursive formula for the given sequence.\newlineSince the sequence is arithmetic, the recursive formula will have the form an=an1+da_n = a_{n-1} + d.\newlineSubstitute 1313 for dd in an=an1+da_n = a_{n-1} + d.\newlineRecursive formula: an=an1+13a_n = a_{n-1} + 13
  4. Match with Choices: Match the recursive formula with the given choices.\newlineThe correct formula is an=an1+13a_n = a_{n-1} + 13.\newlineThis matches choice (A)(A) if we assume the missing subscript nn in the choice (A)(A) is a typo.

More problems from Write a formula for a recursive sequence