Which of the following expressions are equal to 30,600 ?I. ∑n=14530n−10II. ∑n=54920+30(n−5)III. ∑n=246−10+30(n−2)A. I onlyB. I and IIC. II and IIID. I, II, and III
Q. Which of the following expressions are equal to 30,600 ?I. ∑n=14530n−10II. ∑n=54920+30(n−5)III. ∑n=246−10+30(n−2)A. I onlyB. I and IIC. II and IIID. I, II, and III
Evaluate Expression I: Evaluate Expression I: ∑n=145(30n−10)Calculation: Each term in the sum is 30n−10. Summing from n=1 to n=45,n=1∑45(30n−10)=30n=1∑45n−10×45n=1∑45n=245×(45+1)=103530×1035−450=31050−450=30600
Evaluate Expression II: Evaluate Expression II: ∑n=549(20+30(n−5))Calculation: Simplify the expression inside the sum,20+30(n−5)=30n−150+20=30n−130Summing from n=5 to n=49,n=5∑49(30n−130)=30n=5∑49n−130×(49−5+1)n=5∑49n=249×(49+1)−24×(4+1)=1225−10=121530×1215−130×45=36450−5850=30600
Evaluate Expression III: Evaluate Expression III: ∑n=246(−10+30(n−2))Calculation: Simplify the expression inside the sum,−10+30(n−2)=30n−60−10=30n−70Summing from n=2 to n=46,n=2∑46(30n−70)=30n=2∑46n−70×(46−2+1)n=2∑46n=246×(46+1)−1=1035−1=103430×1034−70×45=31020−3150=27870
More problems from Find derivatives of using multiple formulae