Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the equations are true identities?
A. 
(y+6)(y-7)+42=y^(2)-y
B. 
(x+3)(x-8)=x^(2)-5x
Choose 1 answer:
(A) Only A
(B) Only B
(C) Both A and B
(D) Neither 
A nor 
B

Which of the equations are true identities?\newlineA. (y+6)(y7)+42=y2y (y+6)(y-7)+42=y^{2}-y \newlineB. (x+3)(x8)=x25x (x+3)(x-8)=x^{2}-5 x \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A \mathrm{A} nor B \mathrm{B}

Full solution

Q. Which of the equations are true identities?\newlineA. (y+6)(y7)+42=y2y (y+6)(y-7)+42=y^{2}-y \newlineB. (x+3)(x8)=x25x (x+3)(x-8)=x^{2}-5 x \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A \mathrm{A} nor B \mathrm{B}
  1. Expand Expression: Expand (y+6)(y7)(y+6)(y-7) using the distributive property (FOIL method).\newline(y+6)(y7)=y27y+6y42(y+6)(y-7) = y^2 - 7y + 6y - 42
  2. Combine Like Terms: Combine like terms in the expansion. y27y+6y42=y2y42y^2 - 7y + 6y - 42 = y^2 - y - 42
  3. Add 4242: Add 4242 to both sides of the equation from the original problem.\newliney2y42+42=y2yy^2 - y - 42 + 42 = y^2 - y
  4. Check Equation: Check if the left side of equation A is equal to the right side after simplification. y2y=y2yy^2 - y = y^2 - y
  5. Expand Expression: Expand (x+3)(x8)(x+3)(x-8) using the distributive property (FOIL method).\newline(x+3)(x8)=x28x+3x24(x+3)(x-8) = x^2 - 8x + 3x - 24
  6. Combine Like Terms: Combine like terms in the expansion. x28x+3x24=x25x24x^2 - 8x + 3x - 24 = x^2 - 5x - 24

More problems from Find derivatives of using multiple formulae