Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the equations are true identities?
A. 
(5b-2)^(2)+4=25b^(2)-20 b
B. 
(2x^(2)+y^(2))(2x^(2)-y^(2))=4x^(2)-y^(2)
Choose 1 answer:
(A) Only A
(B) Only B
(C) Both A and B
(D) Neither 
A nor 
B

Which of the equations are true identities?\newlineA. (5b2)2+4=25b220b (5 b-2)^{2}+4=25 b^{2}-20 b \newlineB. (2x2+y2)(2x2y2)=4x2y2 \left(2 x^{2}+y^{2}\right)\left(2 x^{2}-y^{2}\right)=4 x^{2}-y^{2} \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A \mathrm{A} nor B \mathrm{B}

Full solution

Q. Which of the equations are true identities?\newlineA. (5b2)2+4=25b220b (5 b-2)^{2}+4=25 b^{2}-20 b \newlineB. (2x2+y2)(2x2y2)=4x2y2 \left(2 x^{2}+y^{2}\right)\left(2 x^{2}-y^{2}\right)=4 x^{2}-y^{2} \newlineChoose 11 answer:\newline(A) Only A\newline(B) Only B\newline(C) Both A and B\newline(D) Neither A \mathrm{A} nor B \mathrm{B}
  1. Expand (5b2)2(5b-2)^2: Expand (5b2)2(5b-2)^2 in option A.\newline(5b2)2=(5b)22(5b)2+(2)2=25b220b+4(5b-2)^2 = (5b)^2 - 2\cdot(5b)\cdot2 + (2)^2 = 25b^2 - 20b + 4
  2. Compare with option A: Compare the expanded form of (5b2)2+4(5b-2)^2 + 4 with the right side of option A.25b220b+4+4=25b220b+825b^2 - 20b + 4 + 4 = 25b^2 - 20b + 8, which is not equal to 25b220b25b^2 - 20b.
  3. Option A evaluation: Option A is not a true identity because the left side does not equal the right side.
  4. Expand (2x2+y2)(2x2y2)(2x^2 + y^2)(2x^2 - y^2): Expand (2x2+y2)(2x2y2)(2x^2 + y^2)(2x^2 - y^2) in option B using the difference of squares formula.\newline(2x2+y2)(2x2y2)=(2x2)2(y2)2=4x4y4(2x^2 + y^2)(2x^2 - y^2) = (2x^2)^2 - (y^2)^2 = 4x^4 - y^4
  5. Compare with option B: Compare the expanded form of (2x2+y2)(2x2y2)(2x^2 + y^2)(2x^2 - y^2) with the right side of option B.4x4y44x^4 - y^4 is not equal to 4x2y24x^2 - y^2.

More problems from Find derivatives of using multiple formulae