Which of the equations are true identities?A. (5b−2)2+4=25b2−20bB. (2x2+y2)(2x2−y2)=4x2−y2Choose 1 answer:(A) Only A(B) Only B(C) Both A and B(D) Neither A nor B
Q. Which of the equations are true identities?A. (5b−2)2+4=25b2−20bB. (2x2+y2)(2x2−y2)=4x2−y2Choose 1 answer:(A) Only A(B) Only B(C) Both A and B(D) Neither A nor B
Expand (5b−2)2: Expand (5b−2)2 in option A.(5b−2)2=(5b)2−2⋅(5b)⋅2+(2)2=25b2−20b+4
Compare with option A: Compare the expanded form of (5b−2)2+4 with the right side of option A.25b2−20b+4+4=25b2−20b+8, which is not equal to 25b2−20b.
Option A evaluation: Option A is not a true identity because the left side does not equal the right side.
Expand (2x2+y2)(2x2−y2): Expand (2x2+y2)(2x2−y2) in option B using the difference of squares formula.(2x2+y2)(2x2−y2)=(2x2)2−(y2)2=4x4−y4
Compare with option B: Compare the expanded form of (2x2+y2)(2x2−y2) with the right side of option B.4x4−y4 is not equal to 4x2−y2.
More problems from Find derivatives of using multiple formulae