Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to (d^((1)/(8)))^(5) ?
Choose all answers that apply:
(A) (d^(5))^((1)/(8))
(B) (d^(5))^(8)
(C) (root(8)(d))^(5)
(D) None of the above

Which expressions are equivalent to (d18)5(d^{\frac{1}{8}})^5 ?\newlineChoose all answers that apply:\newline(A)(A) (d5)18(d^5)^{\frac{1}{8}}\newline(B)(B) (d5)8(d^5)^8\newline(C)(C) d85\sqrt[8]{d}^5\newline(D)(D) None of the above

Full solution

Q. Which expressions are equivalent to (d18)5(d^{\frac{1}{8}})^5 ?\newlineChoose all answers that apply:\newline(A)(A) (d5)18(d^5)^{\frac{1}{8}}\newline(B)(B) (d5)8(d^5)^8\newline(C)(C) d85\sqrt[8]{d}^5\newline(D)(D) None of the above
  1. Evaluate Power Rule: Evaluate the given expression using the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^{m})^{n} = a^{m*n}.\newlineSo, (d18)5=d185=d58(d^{\frac{1}{8}})^{5} = d^{\frac{1}{8}*5} = d^{\frac{5}{8}}.
  2. Check Option A: Check option A: (d5)(1/8)(d^{5})^{(1/8)}. Using the power of a power rule, (d5)(1/8)=d5(1/8)=d5/8(d^{5})^{(1/8)} = d^{5*(1/8)} = d^{5/8}. This is equivalent to the original expression.
  3. Check Option B: Check option B: (d5)8(d^{5})^{8}. Using the power of a power rule, (d5)8=d5×8=d40(d^{5})^{8} = d^{5\times8} = d^{40}. This is not equivalent to the original expression.
  4. Check Option C: Check option C: (d8)5(\sqrt[8]{d})^{5}. The expression (d8)5(\sqrt[8]{d})^{5} means taking the 88th root of dd and then raising it to the 55th power. The 88th root of dd is d1/8d^{1/8}, so (d8)5=(d1/8)5(\sqrt[8]{d})^{5} = (d^{1/8})^5. Using the power of a power rule, (d1/8)5=d(1/8)5=d5/8(d^{1/8})^5 = d^{(1/8)*5} = d^{5/8}. This is equivalent to the original expression.
  5. Determine Final Answer: Determine the final answer.\newlineThe expressions equivalent to (d(1/8))5(d^{(1/8)})^{5} are:\newlineA (d5)(1/8)(d^{5})^{(1/8)} and C (d8)5(\sqrt[8]{d})^{5}.

More problems from Find derivatives of using multiple formulae