Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=10x+10+6f(x) = 10|x + 10| + 6 into the graph of g(x)=10x+2+6g(x) = 10|x + 2| + 6?\newlineChoices:\newline(A) translation 88 units down\newline(B) translation 88 units up\newline(C) translation 88 units right\newline(D) translation 88 units left

Full solution

Q. What kind of transformation converts the graph of f(x)=10x+10+6f(x) = 10|x + 10| + 6 into the graph of g(x)=10x+2+6g(x) = 10|x + 2| + 6?\newlineChoices:\newline(A) translation 88 units down\newline(B) translation 88 units up\newline(C) translation 88 units right\newline(D) translation 88 units left
  1. Identify Vertex: Identify the vertex of the absolute value function f(x)f(x). The vertex of f(x)=10x+10+6f(x) = 10|x + 10| + 6 is at the point where the expression inside the absolute value is zero. Set x+10=0x + 10 = 0 to find the xx-coordinate of the vertex. x=10x = -10 The vertex of f(x)f(x) is at (10,6)(-10, 6).
  2. Identify Vertex: Identify the vertex of the absolute value function g(x)g(x). The vertex of g(x)=10x+2+6g(x) = 10|x + 2| + 6 is at the point where the expression inside the absolute value is zero. Set x+2=0x + 2 = 0 to find the xx-coordinate of the vertex. x=2x = -2 The vertex of g(x)g(x) is at (2,6)(-2, 6).
  3. Type of Transformation: Determine the type of transformation.\newlineThe yy-coordinates of the vertices of f(x)f(x) and g(x)g(x) are the same, so there is no vertical translation.\newlineThe xx-coordinate of the vertex of f(x)f(x) is 10-10, and the xx-coordinate of the vertex of g(x)g(x) is 2-2.\newlineThe transformation involves a horizontal shift.
  4. Calculate Shift: Calculate the horizontal shift.\newlineTo find the horizontal shift, calculate the difference between the x-coordinates of the vertices of f(x)f(x) and g(x)g(x).\newlineShift = x-coordinate of g(x)g(x) - x-coordinate of f(x)f(x)\newlineShift = (2)(10)(-2) - (-10)\newlineShift = 2+10-2 + 10\newlineShift = 88\newlineThe graph of f(x)f(x) is shifted 88 units to the right to become g(x)g(x).

More problems from Describe function transformations