Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=8(x4)2+6 f(x) = -8(x - 4)^2 + 6 into the graph of g(x)=8(x+6)2+6 g(x) = -8(x + 6)^2 + 6 ?\newlineChoices:\newline[A]translation 10 units left\text{[A]translation 10 units left}\newline[B]translation 10 units right\text{[B]translation 10 units right}\newline[C]translation 10 units up\text{[C]translation 10 units up}\newline[D]translation 10 units down\text{[D]translation 10 units down}

Full solution

Q. What kind of transformation converts the graph of f(x)=8(x4)2+6 f(x) = -8(x - 4)^2 + 6 into the graph of g(x)=8(x+6)2+6 g(x) = -8(x + 6)^2 + 6 ?\newlineChoices:\newline[A]translation 10 units left\text{[A]translation 10 units left}\newline[B]translation 10 units right\text{[B]translation 10 units right}\newline[C]translation 10 units up\text{[C]translation 10 units up}\newline[D]translation 10 units down\text{[D]translation 10 units down}
  1. Identify vertex of f(x): Identify the vertex of the function f(x).\newlineThe function f(x)=8(x4)2+6f(x) = -8(x - 4)^2 + 6 is in vertex form, where the vertex (h,k)(h, k) can be found directly from the equation. The vertex of f(x) is at (h,k)=(4,6)(h, k) = (4, 6).
  2. Identify vertex of g(x): Identify the vertex of the function g(x).\newlineThe function g(x) = 8(x+6)2+6-8(x + 6)^2 + 6 is also in vertex form. The vertex of g(x) is at (h,k)=(6,6)(h, k) = (-6, 6).
  3. Determine type of transformation: Determine the type of transformation.\newlineThe transformation involves a change in the xx-coordinate of the vertex while the yy-coordinate remains the same. This indicates a horizontal shift.
  4. Determine direction of horizontal shift: Determine the direction of the horizontal shift.\newlineThe xx-coordinate of the vertex of f(x)f(x) is 44, and the xx-coordinate of the vertex of g(x)g(x) is 6-6. Since 6-6 is to the left of 44 on the number line, the graph has shifted to the left.
  5. Calculate magnitude of horizontal shift: Calculate the magnitude of the horizontal shift.\newlineThe shift is the difference between the x-coordinates of the vertices of f(x)f(x) and g(x)g(x). The shift is 4(6)=4+6=10=10|4 - (-6)| = |4 + 6| = |10| = 10 units.

More problems from Describe function transformations