Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr(pi)/(4))cos(x)=?
Choose 1 answer:
(A) 
(1)/(2)
(B) 1
(C) 
(sqrt2)/(2)
(D) The limit doesn't exist.

limxπ4cos(x)=? \lim _{x \rightarrow \frac{\pi}{4}} \cos (x)=? \newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 11\newline(C) 22 \frac{\sqrt{2}}{2} \newline(D) The limit doesn't exist.

Full solution

Q. limxπ4cos(x)=? \lim _{x \rightarrow \frac{\pi}{4}} \cos (x)=? \newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 11\newline(C) 22 \frac{\sqrt{2}}{2} \newline(D) The limit doesn't exist.
  1. Identify Limit: Identify the limit that needs to be evaluated. We need to find the limit of cos(x)\cos(x) as xx approaches π4\frac{\pi}{4}.
  2. Evaluate Directly: Evaluate the limit directly.\newlineThe function cos(x)\cos(x) is continuous everywhere, so we can evaluate the limit by direct substitution of x=π4x = \frac{\pi}{4} into cos(x)\cos(x).
  3. Substitute and Calculate: Substitute x=π4x = \frac{\pi}{4} into cos(x)\cos(x) and calculate the value.\newlinecos(π4)=22\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}
  4. Check for Errors: Check for any mathematical errors in the calculation.\newlineThe value of cos(π/4)\cos(\pi/4) is indeed 2/2\sqrt{2}/2, which is a known trigonometric identity. There are no mathematical errors.

More problems from Dilations of functions