Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=7(x2)24f(x) = -7(x - 2)^2 - 4 into the graph of g(x)=7(x2)2+5g(x) = -7(x - 2)^2 + 5?\newlineChoices:\newline(A) translation 99 units right\newline(B) translation 99 units up\newline(C) translation 99 units left\newline(D) translation 99 units down

Full solution

Q. What kind of transformation converts the graph of f(x)=7(x2)24f(x) = -7(x - 2)^2 - 4 into the graph of g(x)=7(x2)2+5g(x) = -7(x - 2)^2 + 5?\newlineChoices:\newline(A) translation 99 units right\newline(B) translation 99 units up\newline(C) translation 99 units left\newline(D) translation 99 units down
  1. Find Vertex: f(x)=7(x2)24f(x) = -7(x - 2)^2 - 4\newlineFind the vertex of the given function.\newlineCompare f(x)=7(x2)24f(x) = -7(x - 2)^2 - 4 with vertex form.\newlineVertex of f(x)f(x): (2,4)(2, -4)
  2. Compare with Vertex Form: g(x)=7(x2)2+5g(x) = -7(x - 2)^2 + 5\newlineFind the vertex of the transformed function.\newlineCompare g(x)=7(x2)2+5g(x) = -7(x - 2)^2 + 5 with vertex form.\newlineVertex of g(x)g(x): (2,5)(2, 5)
  3. Find Transformed Vertex: We found:\newlineVertex of f(x)=(2,4)f(x) = (2, -4)\newlineVertex of g(x)=(2,5)g(x) = (2, 5)\newlineIs the transformation horizontal or vertical?\newlineSince the xx-values of the vertices are the same and the yy-values have changed, the transformation is vertical.
  4. Identify Transformation: We have:\newlineVertex of f(x)=(2,4)f(x) = (2, -4)\newlineVertex of g(x)=(2,5)g(x) = (2, 5)\newlineDid f(x)f(x) shift up or down to become g(x)g(x)?\newlineThe yy-coordinate of the vertex of g(x)g(x) is higher than that of f(x)f(x).\newlinef(x)f(x) shifts upwards.
  5. Shift Direction: We found that f(x)f(x) shifts upwards.\newlineIdentify the transformation from (4)(-4) to (5)(5).\newline5(4)|5 - (-4)|\newline=9=|9|\newline=9=9\newlineThe graph of f(x)f(x) shifts 99 units up.

More problems from Describe function transformations