Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=3(x7)2+8f(x) = 3(x - 7)^2 + 8 into the graph of g(x)=3(x7)22g(x) = 3(x - 7)^2 - 2?\newlineChoices:\newline(A) translation 1010 units right\newline(B) translation 1010 units up\newline(C) translation 1010 units left\newline(D) translation 1010 units down

Full solution

Q. What kind of transformation converts the graph of f(x)=3(x7)2+8f(x) = 3(x - 7)^2 + 8 into the graph of g(x)=3(x7)22g(x) = 3(x - 7)^2 - 2?\newlineChoices:\newline(A) translation 1010 units right\newline(B) translation 1010 units up\newline(C) translation 1010 units left\newline(D) translation 1010 units down
  1. Find Vertex: f(x)=3(x7)2+8f(x) = 3(x - 7)^2 + 8\newlineFind the vertex of the given function.\newlineCompare f(x)=3(x7)2+8f(x) = 3(x - 7)^2 + 8 with the vertex form y=a(xh)2+ky = a(x - h)^2 + k.\newlineVertex of f(x)f(x): (7,8)(7, 8)
  2. Compare Functions: g(x)=3(x7)22g(x) = 3(x - 7)^2 - 2\newlineFind the vertex of the transformed function.\newlineCompare g(x)=3(x7)22g(x) = 3(x - 7)^2 - 2 with the vertex form y=a(xh)2+ky = a(x - h)^2 + k.\newlineVertex of g(x)g(x): (7,2)(7, -2)
  3. Vertical Transformation: We found:\newlineVertex of f(x)=(7,8)f(x) = (7, 8)\newlineVertex of g(x)=(7,2)g(x) = (7, -2)\newlineIs the transformation horizontal or vertical?\newlineSince the xx-values of the vertices are the same and the yy-values have changed, the transformation is vertical.
  4. Shift Direction: We have:\newlineVertex of f(x)=(7,8)f(x) = (7, 8)\newlineVertex of g(x)=(7,2)g(x) = (7, -2)\newlineDid f(x)f(x) shift up or down to become g(x)g(x)?\newlineThe yy-coordinate of the vertex decreased from 88 to 2-2.\newlinef(x)f(x) shifts downwards.
  5. Identify Transformation: We found that f(x)f(x) shifts downwards.\newlineIdentify the transformation from (7,8)(7, 8) to (7,2)(7, -2).\newlineCalculate the vertical distance between the two vertices.\newline8(2)=8+2=10=10|8 - (-2)| = |8 + 2| = |10| = 10\newlineThe graph of f(x)f(x) shifts 1010 units down.

More problems from Describe function transformations