Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=4(x7)2+1f(x) = -4(x - 7)^2 + 1 into the graph of g(x)=4x2+1g(x) = -4x^2 + 1?\newlineChoices:\newline(A) translation 77 units left\newline(B) translation 77 units down\newline(C) translation 77 units right\newline(D) translation 77 units up

Full solution

Q. What kind of transformation converts the graph of f(x)=4(x7)2+1f(x) = -4(x - 7)^2 + 1 into the graph of g(x)=4x2+1g(x) = -4x^2 + 1?\newlineChoices:\newline(A) translation 77 units left\newline(B) translation 77 units down\newline(C) translation 77 units right\newline(D) translation 77 units up
  1. Find Vertex: f(x)=4(x7)2+1f(x) = -4(x - 7)^2 + 1\newlineFind the vertex of the given function.\newlineCompare f(x)=4(x7)2+1f(x) = -4(x - 7)^2 + 1 with the vertex form y=a(xh)2+ky = a(x - h)^2 + k.\newlineVertex of f(x)f(x): (7,1)(7, 1)
  2. Compare Functions: g(x)=4x2+1g(x) = -4x^2 + 1\newlineFind the vertex of the transformed function.\newlineCompare g(x)=4x2+1g(x) = -4x^2 + 1 with the vertex form y=ax2+ky = ax^2 + k.\newlineVertex of g(x)g(x): (0,1)(0, 1)
  3. Horizontal or Vertical?: We found:\newlineVertex of f(x)=(7,1)f(x) = (7, 1)\newlineVertex of g(x)=(0,1)g(x) = (0, 1)\newlineIs the transformation horizontal or vertical?\newlineSince the yy-values of the vertices are the same and the xx-values change, the transformation is horizontal.
  4. Left or Right Shift?: We have:\newlineVertex of f(x)=(7,1)f(x) = (7, 1)\newlineVertex of g(x)=(0,1)g(x) = (0, 1)\newlineDid f(x)f(x) shift to the left or right to become g(x)g(x)?\newlineThe xx-coordinates of the vertices are 77 and 00 respectively.\newlineOn a number line, 00 lies to the left of 77.\newlinef(x)f(x) shifts towards the left.
  5. Identify Transformation: We found that f(x)f(x) shifts towards the left.\newlineIdentify the transformation from (7,1)(7, 1) to (0,1)(0, 1).\newlineCalculate the distance between the xx-coordinates of the vertices.\newline70|7 - 0|\newline=7=|7|\newline=7=7\newlineThe graph of f(x)f(x) shifts 77 units to the left.

More problems from Describe function transformations