Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=10(x3)2+5f(x) = -10(x - 3)^2 + 5 into the graph of g(x)=10(x3)23g(x) = -10(x - 3)^2 - 3?\newlineChoices:\newline(A) translation 88 units down\newline(B) translation 88 units left\newline(C) translation 88 units up\newline(D) translation 88 units right

Full solution

Q. What kind of transformation converts the graph of f(x)=10(x3)2+5f(x) = -10(x - 3)^2 + 5 into the graph of g(x)=10(x3)23g(x) = -10(x - 3)^2 - 3?\newlineChoices:\newline(A) translation 88 units down\newline(B) translation 88 units left\newline(C) translation 88 units up\newline(D) translation 88 units right
  1. Find Vertex: f(x)=10(x3)2+5f(x) = -10(x - 3)^2 + 5\newlineFind the vertex of the given function.\newlineCompare f(x)=10(x3)2+5f(x) = -10(x - 3)^2 + 5 with vertex form.\newlineVertex of f(x)f(x): (3,5)(3, 5)
  2. Compare with Vertex Form: g(x)=10(x3)23g(x) = -10(x - 3)^2 - 3\newlineFind the vertex of the transformed function.\newlineCompare g(x)=10(x3)23g(x) = -10(x - 3)^2 - 3 with vertex form.\newlineVertex of g(x)g(x): (3,3)(3, -3)
  3. Find Transformed Vertex: We found:\newlineVertex of f(x)=(3,5)f(x) = (3, 5)\newlineVertex of g(x)=(3,3)g(x) = (3, -3)\newlineIs the transformation horizontal or vertical?\newlineSince the xx-values of the vertices are the same and the yy-values have changed, the transformation is vertical.
  4. Identify Transformation Type: We have:\newlineVertex of f(x)=(3,5)f(x) = (3, 5)\newlineVertex of g(x)=(3,3)g(x) = (3, -3)\newlineDid f(x)f(x) shift up or down to become g(x)g(x)?\newlineThe yy-coordinates of the vertices are 55 and 3-3 respectively.\newlineOn a number line, 3-3 lies below 55.\newlinef(x)f(x) shifts downwards.
  5. Determine Direction of Shift: We found that f(x)f(x) shifts downwards.\newlineIdentify the transformation from (3,5)(3, 5) to (3,3)(3, -3).\newline5(3)|5 - (-3)|\newline=8=|8|\newline=8=8\newlineThe graph of f(x)f(x) shifts 88 units down.

More problems from Describe function transformations