Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
(d)/(dx)((x^(2)-2x+3)/(x+1)) at 
x=1 ?
Choose 1 answer:
(A) -2
(B) 
-(1)/(2)
(C) 1
(D) -1

What is the value of ddx(x22x+3x+1) \frac{d}{d x}\left(\frac{x^{2}-2 x+3}{x+1}\right) at x=1 x=1 ?\newlineChoose 11 answer:\newline(A) 2-2\newline(B) 12 -\frac{1}{2} \newline(C) 11\newline(D) 1-1

Full solution

Q. What is the value of ddx(x22x+3x+1) \frac{d}{d x}\left(\frac{x^{2}-2 x+3}{x+1}\right) at x=1 x=1 ?\newlineChoose 11 answer:\newline(A) 2-2\newline(B) 12 -\frac{1}{2} \newline(C) 11\newline(D) 1-1
  1. Apply Quotient Rule: Apply the quotient rule to find the derivative of the function (x22x+3)/(x+1)(x^{2}-2x+3)/(x+1).\newlineThe quotient rule is given by (d/dx)(u/v)=(v(u)u(v))/v2(d/dx)(u/v) = (v(u') - u(v')) / v^{2}, where u=x22x+3u = x^{2} - 2x + 3 and v=x+1v = x + 1.
  2. Differentiate uu: Differentiate u=x22x+3u = x^2 - 2x + 3 with respect to xx.
    u=ddx(x2)ddx(2x)+ddx(3)u' = \frac{d}{dx}(x^2) - \frac{d}{dx}(2x) + \frac{d}{dx}(3)
    u=2x2+0u' = 2x - 2 + 0
    u=2x2u' = 2x - 2
  3. Differentiate vv: Differentiate v=x+1v = x + 1 with respect to xx.
    v=ddx(x)+ddx(1)v' = \frac{d}{dx}(x) + \frac{d}{dx}(1)
    v=1+0v' = 1 + 0
    v=1v' = 1
  4. Substitute into Quotient Rule: Substitute uu, uu', vv, and vv' into the quotient rule formula.(ddx)(x22x+3x+1)=(x+1)(2x2)(x22x+3)(1)(x+1)2(\frac{d}{dx})\left(\frac{x^2 - 2x + 3}{x + 1}\right) = \frac{(x + 1)(2x - 2) - (x^2 - 2x + 3)(1)}{(x + 1)^2}
  5. Simplify Expression: Simplify the expression obtained in Step 44.\newline(ddx)(x22x+3x+1)=2x22x+2x2+2x3(x+1)2(\frac{d}{dx})\left(\frac{x^2 - 2x + 3}{x + 1}\right) = \frac{2x^2 - 2x + 2 - x^2 + 2x - 3}{(x + 1)^2}\newline(ddx)(x22x+3x+1)=x21(x+1)2(\frac{d}{dx})\left(\frac{x^2 - 2x + 3}{x + 1}\right) = \frac{x^2 - 1}{(x + 1)^2}
  6. Evaluate at x=1x=1: Evaluate the derivative at x=1x=1.
    ddx(x22x+3x+1)x=1=1221+3(1+1)2\frac{d}{dx}\left(\frac{x^2 - 2x + 3}{x + 1}\right)\bigg|_{x=1} = \frac{1^2 - 2\cdot 1 + 3}{(1 + 1)^2}
    ddx(x22x+3x+1)x=1=12+322\frac{d}{dx}\left(\frac{x^2 - 2x + 3}{x + 1}\right)\bigg|_{x=1} = \frac{1 - 2 + 3}{2^2}
    ddx(x22x+3x+1)x=1=24\frac{d}{dx}\left(\frac{x^2 - 2x + 3}{x + 1}\right)\bigg|_{x=1} = \frac{2}{4}
    ddx(x22x+3x+1)x=1=12\frac{d}{dx}\left(\frac{x^2 - 2x + 3}{x + 1}\right)\bigg|_{x=1} = \frac{1}{2}

More problems from Find derivatives of using multiple formulae