Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=x^(2)+12 x and 
g(x)=3x^(2)+10 from 
x=1 to 
x=4 ?
Choose 1 answer:
(A) 
(64)/(3)
(B) 77
(C) 45
(D) 18

What is the area of the region between the graphs of f(x)=x2+12x f(x)=x^{2}+12 x and g(x)=3x2+10 g(x)=3 x^{2}+10 from x=1 x=1 to x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 643 \frac{64}{3} \newline(B) 7777\newline(C) 4545\newline(D) 1818

Full solution

Q. What is the area of the region between the graphs of f(x)=x2+12x f(x)=x^{2}+12 x and g(x)=3x2+10 g(x)=3 x^{2}+10 from x=1 x=1 to x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 643 \frac{64}{3} \newline(B) 7777\newline(C) 4545\newline(D) 1818
  1. Find Difference of Functions: To find the area between two curves, we need to integrate the difference between the functions over the given interval. The difference between the functions f(x)f(x) and g(x)g(x) is: f(x)g(x)=(x2+12x)(3x2+10)f(x) - g(x) = (x^2 + 12x) - (3x^2 + 10)
  2. Simplify the Expression: Simplify the expression to find the integrand:\newlinef(x)g(x)=x2+12x3x210f(x) - g(x) = x^2 + 12x - 3x^2 - 10\newlinef(x)g(x)=2x2+12x10f(x) - g(x) = -2x^2 + 12x - 10
  3. Integrate the Function: Now we integrate the function 2x2+12x10-2x^2 + 12x - 10 from x=1x=1 to x=4x=4:14(2x2+12x10)dx\int_{1}^{4} (-2x^2 + 12x - 10) \, dx
  4. Find Antiderivative: Find the antiderivative of 2x2+12x10-2x^2 + 12x - 10: \newlineAntiderivative = (23)x3+(122)x210x\left(-\frac{2}{3}\right)x^3 + \left(\frac{12}{2}\right)x^2 - 10x \newlineAntiderivative = (23)x3+6x210x\left(-\frac{2}{3}\right)x^3 + 6x^2 - 10x
  5. Evaluate Antiderivative: Evaluate the antiderivative from x=1x=1 to x=4x=4: [(23)(4)3+6(4)210(4)][(23)(1)3+6(1)210(1)]\left[\left(-\frac{2}{3}\right)(4)^3 + 6(4)^2 - 10(4)\right] - \left[\left(-\frac{2}{3}\right)(1)^3 + 6(1)^2 - 10(1)\right]
  6. Calculate Values: Calculate the values:\newline[(23)(64)+6(16)40][(23)(1)+6(1)10][(-\frac{2}{3})(64) + 6(16) - 40] - [(-\frac{2}{3})(1) + 6(1) - 10]\newline[(1283)+9640][(23)+610][(-\frac{128}{3}) + 96 - 40] - [(-\frac{2}{3}) + 6 - 10]
  7. Simplify the Expression: Simplify the expression:\newline[\(-128/33 + 288288/33 - 120120/33\]) - [\(-2/33 + 1818/33 - 3030/33\])\newline[\(-128/33 + 288288/33 - 120120/33\]) - [\(-2/33 + 1818/33 - 3030/33\])\newline[\(-128 + 288288 - 120120\] / 33) - [\(-2 + 1818 - 3030\] / 33)\newline[\(40/33\]) - [\(-14/33\])
  8. Combine Terms: Combine the terms: 403+143=543\frac{40}{3} + \frac{14}{3} = \frac{54}{3}
  9. Final Value: Simplify the final value: 543=18\frac{54}{3} = 18

More problems from Write variable expressions for arithmetic sequences