Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=sqrt(x+1) and 
g(x)=2x-4 from 
x=0 to 
x=3 ?
Choose 1 answer:
(A) 
(5)/(3)
(B) -3
(C) 
(14)/(3)
(D) 
(23)/(3)

What is the area of the region between the graphs of f(x)=x+1 f(x)=\sqrt{x+1} and g(x)=2x4 g(x)=2 x-4 from x=0 x=0 to x=3 x=3 ?\newlineChoose 11 answer:\newline(A) 53 \frac{5}{3} \newline(B) 3-3\newline(C) 143 \frac{14}{3} \newline(D) 233 \frac{23}{3}

Full solution

Q. What is the area of the region between the graphs of f(x)=x+1 f(x)=\sqrt{x+1} and g(x)=2x4 g(x)=2 x-4 from x=0 x=0 to x=3 x=3 ?\newlineChoose 11 answer:\newline(A) 53 \frac{5}{3} \newline(B) 3-3\newline(C) 143 \frac{14}{3} \newline(D) 233 \frac{23}{3}
  1. Set up integral for area: To find the area between the two curves, we need to integrate the difference between the functions from x=0x=0 to x=3x=3. First, we need to set up the integral for the area between the curves. The area AA is given by the integral from 00 to 33 of the top function minus the bottom function. Since we are looking for the area between the curves, we need to determine which function is on top (higher value) for the interval from x=0x=0 to x=3x=3.
  2. Determine top function: We evaluate both functions at a point within the interval to determine which function is on top. Let's choose x=1x=1 for simplicity. f(1)=1+1=2f(1) = \sqrt{1+1} = \sqrt{2} g(1)=2(1)4=2g(1) = 2(1)-4 = -2 Since \sqrt{2} > -2, f(x)f(x) is the top function and g(x)g(x) is the bottom function on the interval from x=0x=0 to x=3x=3.
  3. Set up integral equation: Now we can set up the integral to find the area between the curves.\newlineA=03(f(x)g(x))dxA = \int_{0}^{3} (f(x) - g(x)) \, dx\newlineA=03(x+1(2x4))dxA = \int_{0}^{3} (\sqrt{x+1} - (2x-4)) \, dx
  4. Calculate the integral: Next, we calculate the integral.\newlineA=03(x+12x+4)dxA = \int_{0}^{3} (\sqrt{x+1} - 2x + 4) \, dx\newlineThis requires us to integrate term by term.
  5. Integrate x+1\sqrt{x+1}: We integrate the first term, x+1\sqrt{x+1}, using a substitution if necessary.\newlineLet u=x+1u = x+1, then du=dxdu = dx, and when x=0x=0, u=1u=1, and when x=3x=3, u=4u=4.\newlineThe integral of u\sqrt{u} with respect to uu is x+1\sqrt{x+1}00.
  6. Integrate 2x-2x: We integrate the second term, 2x-2x, which is a simple power function.\newlineThe integral of 2x-2x with respect to xx is x2-x^2.
  7. Integrate +4+4: We integrate the third term, +4+4, which is a constant.\newlineThe integral of 44 with respect to xx is 4x4x.
  8. Combine and evaluate: Now we combine the integrated terms and evaluate from 00 to 33.A=[(23)(x+1)32x2+4x]A = \left[\left(\frac{2}{3}\right)(x+1)^{\frac{3}{2}} - x^2 + 4x\right] from 00 to 33
  9. Evaluate upper limit: We evaluate the expression at the upper limit, x=3x=3.\newlineA(3)=23(3+1)3232+43A(3) = \frac{2}{3}(3+1)^{\frac{3}{2}} - 3^2 + 4\cdot3\newlineA(3)=23(4)329+12A(3) = \frac{2}{3}(4)^{\frac{3}{2}} - 9 + 12\newlineA(3)=23(8)9+12A(3) = \frac{2}{3}(8) - 9 + 12\newlineA(3)=1639+12A(3) = \frac{16}{3} - 9 + 12\newlineA(3)=163+3A(3) = \frac{16}{3} + 3
  10. Evaluate lower limit: We evaluate the expression at the lower limit, x=0x=0.A(0)=(23)(0+1)3202+40A(0) = \left(\frac{2}{3}\right)(0+1)^{\frac{3}{2}} - 0^2 + 4\cdot 0A(0)=(23)(1)0+0A(0) = \left(\frac{2}{3}\right)(1) - 0 + 0A(0)=23A(0) = \frac{2}{3}
  11. Find the area: We subtract the value of the expression at the lower limit from the value at the upper limit to find the area.\newlineA=A(3)A(0)A = A(3) - A(0)\newlineA=[163+3](23)A = \left[\frac{16}{3} + 3\right] - \left(\frac{2}{3}\right)\newlineA=(163)+(93)(23)A = \left(\frac{16}{3}\right) + \left(\frac{9}{3}\right) - \left(\frac{2}{3}\right)\newlineA=(163)+(73)A = \left(\frac{16}{3}\right) + \left(\frac{7}{3}\right)\newlineA=233A = \frac{23}{3}

More problems from Write variable expressions for arithmetic sequences