Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Using synthetic division, determine the quotient of the expression below.


(1+4x^(2)-x-x^(4))/(2-x)

Using synthetic division, determine the quotient of the expression below.\newline(1+4x2xx4)(2x)\frac{(1+4x^{2}-x-x^{4})}{(2-x)}

Full solution

Q. Using synthetic division, determine the quotient of the expression below.\newline(1+4x2xx4)(2x)\frac{(1+4x^{2}-x-x^{4})}{(2-x)}
  1. Set up synthetic division: Set up the synthetic division.\newlineTo use synthetic division, we need to rewrite the divisor (2x)(2-x) as (x2)(x-2) by factoring out a negative sign. We also need to arrange the dividend (1+4x2xx4)(1+4x^{2}-x-x^{4}) in descending powers of xx, filling in any missing terms with 00 coefficients.\newlineThe correct order of the dividend is x4+0x3+4x2x+1-x^4 + 0x^3 + 4x^2 - x + 1.\newlineThe number we use for synthetic division is the zero of the divisor x2x-2, which is x=2x=2.
  2. Perform synthetic division: Perform the synthetic division.\newlineWe write down the coefficients of the dividend and the zero of the divisor:\newline 2104112 | -1 0 4 -1 1\newlineBring down the leading coefficient:\newline 2104112 | -1 0 4 -1 1\newline ----------------\newline 1-1\newlineMultiply the leading coefficient by the zero of the divisor and write the result under the next coefficient:\newline 2104112 | -1 0 4 -1 1\newline ----------------\newline 12-1 -2\newlineAdd the numbers in the second column:\newline 2104112 | -1 0 4 -1 1\newline ----------------\newline 122-1 -2 2\newlineContinue this process for the rest of the coefficients:\newline 2104112 | -1 0 4 -1 1\newline ----------------\newline 1220-1 -2 2 0\newlineMultiply and add for the last column:\newline 2104112 | -1 0 4 -1 1\newline ----------------\newline 2104112 | -1 0 4 -1 100
  3. Write down result: Write down the result of the synthetic division.\newlineThe numbers at the bottom row give us the coefficients of the quotient, starting from one degree less than the original polynomial:\newlineThe quotient is x32x2+2x+0-x^3 - 2x^2 + 2x + 0, and the remainder is 11.
  4. State final answer: State the final answer.\newlineThe quotient of the division of (1+4x2xx4)(1+4x^{2}-x-x^{4}) by (2x)(2-x) is x32x2+2x-x^3 - 2x^2 + 2x.

More problems from Sum of finite series not start from 1