Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Using implicit differentiation, find 
(dy)/(dx).

sqrt(xy)=-5+yx^(3)

Using implicit differentiation, find dydx \frac{d y}{d x} .\newlinexy=5+yx3 \sqrt{x y}=-5+y x^{3}

Full solution

Q. Using implicit differentiation, find dydx \frac{d y}{d x} .\newlinexy=5+yx3 \sqrt{x y}=-5+y x^{3}
  1. Apply Implicit Differentiation: First, we need to apply implicit differentiation to both sides of the equation with respect to xx. The equation is xy=5+yx3\sqrt{xy} = -5 + yx^3. We will differentiate term by term.
  2. Differentiate Left Side: Differentiate the left side, xy\sqrt{xy}, with respect to xx. Using the chain rule, we get 12(xy)12×(xdydx+y)\frac{1}{2}(xy)^{-\frac{1}{2}} \times (x\frac{dy}{dx} + y).
  3. Differentiate Right Side: Differentiate the right side, 5+yx3-5 + yx^3, with respect to xx. The derivative of 5-5 is 00, and using the product rule for yx3yx^3, we get 3yx2+x3(dydx)3yx^2 + x^3\left(\frac{dy}{dx}\right).
  4. Equate Derivatives: Now we equate the derivatives from the left and right sides to get (12)(xy)12(xdydx+y)=3yx2+x3dydx(\frac{1}{2})(xy)^{-\frac{1}{2}} * (x\frac{dy}{dx} + y) = 3yx^2 + x^3\frac{dy}{dx}.
  5. Solve for dydx\frac{dy}{dx}: We need to solve for dydx\frac{dy}{dx}. To do this, we'll collect all the terms containing dydx\frac{dy}{dx} on one side and the rest on the other side. This gives us 12(xy)12xdydxx3dydx=3yx212(xy)12y\frac{1}{2}(xy)^{-\frac{1}{2}} \cdot x\frac{dy}{dx} - x^3\frac{dy}{dx} = 3yx^2 - \frac{1}{2}(xy)^{-\frac{1}{2}} \cdot y.
  6. Factor Out (dydx):(\frac{dy}{dx}): Factor out (dydx)(\frac{dy}{dx}) from the terms on the left side to get (\frac{dy}{dx})((\frac{\(1\)}{\(2\)})(xy)^{-\frac{\(1\)}{\(2\)}} \cdot x - x^\(3) = 33yx^22 - (\frac{11}{22})(xy)^{-\frac{11}{22}} \cdot y.
  7. Isolate (dydx):</b>Dividebothsidesby$(12(xy)12xx3)(\frac{dy}{dx}):</b> Divide both sides by \$\left(\frac{1}{2}(xy)^{-\frac{1}{2}} \cdot x - x^3\right) to isolate (dydx)(\frac{dy}{dx}). This gives us (\frac{dy}{dx}) = \frac{\(3\)yx^\(2\) - \left(\frac{\(1\)}{\(2\)}(xy)^{-\frac{\(1\)}{\(2\)}} \cdot y\right)}{\left(\frac{\(1\)}{\(2\)}(xy)^{-\frac{\(1\)}{\(2\)}} \cdot x - x^\(3\)\right)}.}
  8. Simplify \((\frac{dy}{dx}): Simplify the expression for \$(\frac{dy}{dx}) if possible. However, in this case, the expression is already in its simplest form, so we have our final answer.

More problems from Find derivatives using implicit differentiation