Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of 
y=|x| is reflected across the 
x-axis and then scaled vertically by a factor of 
(3)/(8).
What is the equation of the new graph?
Choose 1 answer:
(A) 
y=(8)/(3)|x|
(B) 
y=-(8)/(3)|x|
(C) 
y=(3)/(8)|x|
(D) 
y=-(3)/(8)|x|

The graph of y=xy=|x| is reflected across the xx-axis and then scaled vertically by a factor of (38)\left(\frac{3}{8}\right). \newlineWhat is the equation of the new graph? \newlineChoose 11 answer: \newline(A) y=(83)xy=\left(\frac{8}{3}\right)|x| \newline(B) y=(83)xy=-\left(\frac{8}{3}\right)|x| \newline(C) y=(38)xy=\left(\frac{3}{8}\right)|x| \newline(D) y=(38)xy=-\left(\frac{3}{8}\right)|x|

Full solution

Q. The graph of y=xy=|x| is reflected across the xx-axis and then scaled vertically by a factor of (38)\left(\frac{3}{8}\right). \newlineWhat is the equation of the new graph? \newlineChoose 11 answer: \newline(A) y=(83)xy=\left(\frac{8}{3}\right)|x| \newline(B) y=(83)xy=-\left(\frac{8}{3}\right)|x| \newline(C) y=(38)xy=\left(\frac{3}{8}\right)|x| \newline(D) y=(38)xy=-\left(\frac{3}{8}\right)|x|
  1. Reflect across x-axis: Reflect y=xy=|x| across the x-axis.\newlineTo reflect a graph across the x-axis, we multiply the function by 1-1.\newlineReflected function: y=xy = -|x|
  2. Scale vertically by 38\frac{3}{8}: Scale the reflected function vertically by a factor of 38\frac{3}{8}. To scale a function vertically, we multiply the function by the scaling factor. Scaled function: y=(38)(x)y = \left(\frac{3}{8}\right)(-|x|)
  3. Simplify function: Simplify the scaled function.\newlineSimplified function: y=(38)xy = -\left(\frac{3}{8}\right)|x|

More problems from Transformations of functions