Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The following function gives the temperature (in degrees Celsius) at the beach in Miami, Florida, 
t hours after midnight on a certain day:

M(t)=-6*sin((pi)/(12)t)+18
What is the instantaneous rate of change of the temperature at 9 a.m.?
Choose 1 answer:
(A) 1.11 degrees Celsius per hour
(B) 
1.11 degrees Celsius
(C) 
13.76 degrees Celsius per hour
(D) 
13.76 degrees Celsius

The following function gives the temperature (in degrees Celsius) at the beach in Miami, Florida, t t hours after midnight on a certain day:\newlineM(t)=6sin(π12t)+18 M(t)=-6 \cdot \sin \left(\frac{\pi}{12} t\right)+18 \newlineWhat is the instantaneous rate of change of the temperature at 99 a.m.?\newlineChoose 11 answer:\newline(A) 11.1111 degrees Celsius per hour\newline(B) 1.11 \mathbf{1 . 1 1} degrees Celsius\newline(C) 13.76 \mathbf{1 3 . 7 6} degrees Celsius per hour\newline(D) 13.76 \mathbf{1 3 . 7 6} degrees Celsius

Full solution

Q. The following function gives the temperature (in degrees Celsius) at the beach in Miami, Florida, t t hours after midnight on a certain day:\newlineM(t)=6sin(π12t)+18 M(t)=-6 \cdot \sin \left(\frac{\pi}{12} t\right)+18 \newlineWhat is the instantaneous rate of change of the temperature at 99 a.m.?\newlineChoose 11 answer:\newline(A) 11.1111 degrees Celsius per hour\newline(B) 1.11 \mathbf{1 . 1 1} degrees Celsius\newline(C) 13.76 \mathbf{1 3 . 7 6} degrees Celsius per hour\newline(D) 13.76 \mathbf{1 3 . 7 6} degrees Celsius
  1. Calculate Derivative of M(t): To find the instantaneous rate of change of the temperature at 99 a.m., we need to calculate the derivative of M(t)M(t) with respect to tt and then evaluate it at t=9t = 9 hours.
  2. Find Derivative Using Chain Rule: First, let's find the derivative of M(t)M(t):M(t)=ddt[6sin(π12t)+18]M'(t) = \frac{d}{dt}[-6\sin\left(\frac{\pi}{12}t\right) + 18]Using the chain rule, the derivative of 6sin(π12t)-6\sin\left(\frac{\pi}{12}t\right) is 6cos(π12t)(π12)-6\cos\left(\frac{\pi}{12}t\right) \cdot \left(\frac{\pi}{12}\right).
  3. Evaluate Derivative at t=9t = 9: So, M(t)=6×(π/12)×cos((π/12)t)M'(t) = -6 \times (\pi/12) \times \cos((\pi/12)t)\newlineSimplify the constant: 6×(π/12)=π/2-6 \times (\pi/12) = -\pi/2\newlineM(t)=π/2×cos((π/12)t)M'(t) = -\pi/2 \times \cos((\pi/12)t)
  4. Calculate Cosine Term: Now, let's evaluate M(t)M'(t) at t=9t = 9 hours to find the rate of change at 99 a.m.: M(9)=π2cos(π129)M'(9) = -\frac{\pi}{2} \cdot \cos\left(\frac{\pi}{12}\cdot9\right)
  5. Simplify Expression: Calculate the cosine term: cos(π129)=cos(34π)=cos(135)\cos\left(\frac{\pi}{12}\cdot 9\right) = \cos\left(\frac{3}{4}\pi\right) = \cos(135^\circ)
  6. Multiply Constants: Cosine of 135135 degrees is 2/2-\sqrt{2}/2.\newlineM(9)=π/2×(2/2)M'(9) = -\pi/2 \times (-\sqrt{2}/2)
  7. Multiply Constants: Cosine of 135135 degrees is 2/2-\sqrt{2}/2.M(9)=π/2×(2/2)M'(9) = -\pi/2 \times (-\sqrt{2}/2)Simplify the expression: M(9)=(π/2)×(2/2)M'(9) = (\pi/2) \times (\sqrt{2}/2)
  8. Multiply Constants: Cosine of 135135 degrees is 2/2-\sqrt{2}/2.M(9)=π/2×(2/2)M'(9) = -\pi/2 \times (-\sqrt{2}/2)Simplify the expression: M(9)=(π/2)×(2/2)M'(9) = (\pi/2) \times (\sqrt{2}/2)Multiply the constants: M(9)=(π×2)/4M'(9) = (\pi \times \sqrt{2})/4

More problems from Find derivatives of sine and cosine functions