Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The equation of an ellipse is given below.

((x-4)^(2))/(9)+((y+6)^(2))/(4)=1
What are the foci of this ellipse?
Choose 1 answer:
(A) 
(4+sqrt5,-6) and 
(4-sqrt5,-6)
(B) 
(13,-6) and 
(-5,-6)
(c) 
(4,3) and 
(4,-15)
(D) 
(4,-6+sqrt5) and 
(4,-6-sqrt5)

The equation of an ellipse is given below.\newline(x4)29+(y+6)24=1 \frac{(x-4)^{2}}{9}+\frac{(y+6)^{2}}{4}=1 \newlineWhat are the foci of this ellipse?\newlineChoose 11 answer:\newline(A) (4+5,6) (4+\sqrt{5},-6) and (45,6) (4-\sqrt{5},-6) \newline(B) (13,6) (13,-6) and (5,6) (-5,-6) \newline(C) (4,3) (4,3) and (4,15) (4,-15) \newline(D) (4,6+5) (4,-6+\sqrt{5}) and (4,65) (4,-6-\sqrt{5})

Full solution

Q. The equation of an ellipse is given below.\newline(x4)29+(y+6)24=1 \frac{(x-4)^{2}}{9}+\frac{(y+6)^{2}}{4}=1 \newlineWhat are the foci of this ellipse?\newlineChoose 11 answer:\newline(A) (4+5,6) (4+\sqrt{5},-6) and (45,6) (4-\sqrt{5},-6) \newline(B) (13,6) (13,-6) and (5,6) (-5,-6) \newline(C) (4,3) (4,3) and (4,15) (4,-15) \newline(D) (4,6+5) (4,-6+\sqrt{5}) and (4,65) (4,-6-\sqrt{5})
  1. Given equation of the ellipse: Given equation of the ellipse: (x4)29+(y+6)24=1\frac{(x-4)^{2}}{9}+\frac{(y+6)^{2}}{4}=1. Identify the center (h,k)(h, k), the lengths of the semi-major axis (a)(a), and the semi-minor axis (b)(b). The center is at (h,k)=(4,6)(h, k) = (4, -6). The length of the semi-major axis is the square root of the larger denominator, so a=9=3a = \sqrt{9} = 3. The length of the semi-minor axis is the square root of the smaller denominator, so b=4=2b = \sqrt{4} = 2.
  2. Identify the center, lengths of the semi-major axis, and semi-minor axis: Calculate the distance cc from the center to the foci using the formula c=a2b2c = \sqrt{a^2 - b^2}. Here, a=3a = 3 and b=2b = 2. c=3222=94=5c = \sqrt{3^2 - 2^2} = \sqrt{9 - 4} = \sqrt{5}.
  3. Calculate the distance cc from the center to the foci: Determine the coordinates of the foci.\newlineSince the larger denominator is under the (x4)2(x-4)^2 term, the foci are horizontal from the center.\newlineThe foci are at (h±c,k)=(4±5,6)(h \pm c, k) = (4 \pm \sqrt{5}, -6).
  4. Determine the coordinates of the foci: Write the final coordinates of the foci.\newlineThe foci are at (4+5,6)(4 + \sqrt{5}, -6) and (45,6)(4 - \sqrt{5}, -6).

More problems from Find properties of ellipses from equations in general form