Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The equation of an ellipse is given below.

(x^(2))/(17)+(y^(2))/(35)=1
What are the foci of this ellipse?
Choose 1 answer:
(A) 
(sqrt18,0) and 
(-sqrt18,0)
(B) 
(sqrt35,0) and 
(-sqrt35,0)
(c) 
(0,sqrt18) and 
(0,-sqrt18)
(D) 
(0,sqrt35) and 
(0,-sqrt35)

The equation of an ellipse is given below.\newlinex217+y235=1 \frac{x^{2}}{17}+\frac{y^{2}}{35}=1 \newlineWhat are the foci of this ellipse?\newlineChoose 11 answer:\newline(A) (18,0) (\sqrt{18}, 0) and (18,0) (-\sqrt{18}, 0) \newline(B) (35,0) (\sqrt{35}, 0) and (35,0) (-\sqrt{35}, 0) \newline(C) (0,18) (0, \sqrt{18}) and (0,18) (0,-\sqrt{18}) \newline(D) (0,35) (0, \sqrt{35}) and (0,35) (0,-\sqrt{35})

Full solution

Q. The equation of an ellipse is given below.\newlinex217+y235=1 \frac{x^{2}}{17}+\frac{y^{2}}{35}=1 \newlineWhat are the foci of this ellipse?\newlineChoose 11 answer:\newline(A) (18,0) (\sqrt{18}, 0) and (18,0) (-\sqrt{18}, 0) \newline(B) (35,0) (\sqrt{35}, 0) and (35,0) (-\sqrt{35}, 0) \newline(C) (0,18) (0, \sqrt{18}) and (0,18) (0,-\sqrt{18}) \newline(D) (0,35) (0, \sqrt{35}) and (0,35) (0,-\sqrt{35})
  1. Identify lengths of axes: Identify the lengths of the semi-major and semi-minor axes.\newlineThe standard form of an ellipse is (x2a2)+(y2b2)=1(\frac{x^2}{a^2}) + (\frac{y^2}{b^2}) = 1, where aa is the length of the semi-major axis and bb is the length of the semi-minor axis. In the given equation, a2=35a^2 = 35 and b2=17b^2 = 17.
  2. Determine major axis: Determine which axis is the major axis.\newlineSince a2=35a^2 = 35 and b2=17b^2 = 17, and a^2 > b^2, the major axis is along the y-axis and the minor axis is along the x-axis.
  3. Calculate distance to foci: Calculate the distance cc from the center to the foci.\newlineThe distance cc is found using the equation c2=a2b2c^2 = a^2 - b^2. Here, a2=35a^2 = 35 and b2=17b^2 = 17, so c2=3517=18c^2 = 35 - 17 = 18.
  4. Calculate value of c: Calculate the value of cc. Taking the square root of both sides of c2=18c^2 = 18, we get c=18c = \sqrt{18}.
  5. Identify coordinates of foci: Identify the coordinates of the foci.\newlineSince the major axis is along the y-axis, the foci are at (0,±c)(0, \pm c). Therefore, the coordinates of the foci are (0,18)(0, \sqrt{18}) and (0,18)(0, -\sqrt{18}).

More problems from Find properties of ellipses from equations in general form