Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Sydney was asked whether the following equation is an identity:

(2x^(2)-18)(x+3)(x-3)=2x^(4)-36x^(2)+162
She performed the following steps:

(2x^(2)-18)(x+3)(x-3)

longrightarrow^(" Step "1)=2(x^(2)-9)(x^(2)-3x+3x-9)

longrightarrow^(" Step "2)=2(x^(2)-9)(x^(2)-9)

3^(" Step "3)=2(x^(2)-9)^(2)

4^(" Step "4)=2(x^(4)-18x^(2)+81)

rarr"" Step "5"=2x^(4)-36x^(2)+162
For this reason, Sydney stated that the equation is a true identity.
Is Sydney correct? If not, in which step did she make a mistake?
Choose 1 answer:
(A) Sydney is correct.
(B) Sydney is incorrect. She made a mistake in step 1.
(C) Sydney is incorrect. She made a mistake in step 3.
(D) Sydney is incorrect. She made a mistake in step 4.

Sydney was asked whether the following equation is an identity:\newline(2x218)(x+3)(x3)=2x436x2+162 \left(2 x^{2}-18\right)(x+3)(x-3)=2 x^{4}-36 x^{2}+162 \newlineShe performed the following steps:\newline(2x218)(x+3)(x3) \left(2 x^{2}-18\right)(x+3)(x-3) \newline Step 1=2(x29)(x23x+3x9) \stackrel{\text { Step } 1}{\hookrightarrow}=2\left(x^{2}-9\right)\left(x^{2}-3 x+3 x-9\right) \newline Step 2=2(x29)(x29) \stackrel{\text { Step } 2}{\hookrightarrow}=2\left(x^{2}-9\right)\left(x^{2}-9\right) \newline Step 3=2(x29)2 \stackrel{\text { Step } 3}{\hookrightarrow}=2\left(x^{2}-9\right)^{2} \newline Step 4=2(x418x2+81) \stackrel{\text { Step } 4}{\hookrightarrow}=2\left(x^{4}-18 x^{2}+81\right) \newline Step 5=2x436x2+162 \stackrel{\text { Step } 5}{\hookrightarrow}=2 x^{4}-36 x^{2}+162 \newlineFor this reason, Sydney stated that the equation is a true identity.\newlineIs Sydney correct? If not, in which step did she make a mistake?\newlineChoose 11 answer:\newline(A) Sydney is correct.\newline(B) Sydney is incorrect. She made a mistake in step 11.\newline(C) Sydney is incorrect. She made a mistake in step 33.\newline(D) Sydney is incorrect. She made a mistake in step 44.

Full solution

Q. Sydney was asked whether the following equation is an identity:\newline(2x218)(x+3)(x3)=2x436x2+162 \left(2 x^{2}-18\right)(x+3)(x-3)=2 x^{4}-36 x^{2}+162 \newlineShe performed the following steps:\newline(2x218)(x+3)(x3) \left(2 x^{2}-18\right)(x+3)(x-3) \newline Step 1=2(x29)(x23x+3x9) \stackrel{\text { Step } 1}{\hookrightarrow}=2\left(x^{2}-9\right)\left(x^{2}-3 x+3 x-9\right) \newline Step 2=2(x29)(x29) \stackrel{\text { Step } 2}{\hookrightarrow}=2\left(x^{2}-9\right)\left(x^{2}-9\right) \newline Step 3=2(x29)2 \stackrel{\text { Step } 3}{\hookrightarrow}=2\left(x^{2}-9\right)^{2} \newline Step 4=2(x418x2+81) \stackrel{\text { Step } 4}{\hookrightarrow}=2\left(x^{4}-18 x^{2}+81\right) \newline Step 5=2x436x2+162 \stackrel{\text { Step } 5}{\hookrightarrow}=2 x^{4}-36 x^{2}+162 \newlineFor this reason, Sydney stated that the equation is a true identity.\newlineIs Sydney correct? If not, in which step did she make a mistake?\newlineChoose 11 answer:\newline(A) Sydney is correct.\newline(B) Sydney is incorrect. She made a mistake in step 11.\newline(C) Sydney is incorrect. She made a mistake in step 33.\newline(D) Sydney is incorrect. She made a mistake in step 44.
  1. Expand terms: Expand the first two terms (2x218)(2x^2 - 18) and (x+3)(x + 3).(2x218)(x+3)=2x3+6x218x54(2x^2 - 18)(x + 3) = 2x^3 + 6x^2 - 18x - 54

More problems from One-step inequalities: word problems