Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

n=3lnnn\sum_{n=3}^{\infty}\frac{\ln n}{\sqrt{n}} is this divergent or convergent?

Full solution

Q. n=3lnnn\sum_{n=3}^{\infty}\frac{\ln n}{\sqrt{n}} is this divergent or convergent?
  1. Determine Convergence: We need to determine if the series n=3lnnn\sum_{n=3}^{\infty} \frac{\ln n}{\sqrt{n}} is convergent or divergent. We can use the comparison test or integral test to analyze this series.
  2. Integral Test: Let's use the integral test. Consider the integral from 33 to \infty of (lnx)/(x)dx(\ln x)/(\sqrt{x}) \, dx. We need to check if this integral converges or diverges.
  3. Substitute u: Substitute u=xu = \sqrt{x}, then du=12xdxdu = \frac{1}{2\sqrt{x}} dx, so dx=2xdudx = 2\sqrt{x} du. When x=3x = 3, u=3u = \sqrt{3}, and when x=x = \infty, u=u = \infty. The integral becomes 3lnu2u2udu\int_{\sqrt{3}}^{\infty} \frac{\ln u^2}{u} \cdot 2u du.
  4. Simplify Integral: Simplify the integral: 32uln(u2)udu=32ln(u2)du\int_{\sqrt{3}}^{\infty} \frac{2u \ln(u^2)}{u} du = \int_{\sqrt{3}}^{\infty} 2 \ln(u^2) du.

More problems from Convergent and divergent geometric series