Determine Convergence: We need to determine if the series ∑n=3∞nlnn is convergent or divergent. We can use the comparison test or integral test to analyze this series.
Integral Test: Let's use the integral test. Consider the integral from 3 to ∞ of (lnx)/(x)dx. We need to check if this integral converges or diverges.
Substitute u: Substitute u=x, then du=2x1dx, so dx=2xdu. When x=3, u=3, and when x=∞, u=∞. The integral becomes ∫3∞ulnu2⋅2udu.
Simplify Integral: Simplify the integral: ∫3∞u2uln(u2)du=∫3∞2ln(u2)du.
More problems from Convergent and divergent geometric series