Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve using elimination.
\newline
−
4
x
+
6
y
=
6
-4x + 6y = 6
−
4
x
+
6
y
=
6
\newline
7
x
−
6
y
=
12
7x - 6y = 12
7
x
−
6
y
=
12
\newline
(_____, _____)
View step-by-step help
Home
Math Problems
Grade 8
Solve a system of equations using elimination
Full solution
Q.
Solve using elimination.
\newline
−
4
x
+
6
y
=
6
-4x + 6y = 6
−
4
x
+
6
y
=
6
\newline
7
x
−
6
y
=
12
7x - 6y = 12
7
x
−
6
y
=
12
\newline
(_____, _____)
Write Equations:
Write down the
system of equations
.
\newline
−
4
x
+
6
y
=
6
-4x + 6y = 6
−
4
x
+
6
y
=
6
\newline
7
x
−
6
y
=
12
7x − 6y = 12
7
x
−6
y
=
12
\newline
We need to eliminate one of the variables by adding the two equations together.
Add Equations:
Add the two equations together to eliminate
y
y
y
.
\newline
(
−
4
x
+
6
y
)
+
(
7
x
−
6
y
)
=
6
+
12
(-4x + 6y) + (7x − 6y) = 6 + 12
(
−
4
x
+
6
y
)
+
(
7
x
−6
y
)
=
6
+
12
\newline
The
y
y
y
terms cancel each other out, leaving us with:
\newline
−
4
x
+
7
x
=
18
−4x + 7x = 18
−4
x
+
7
x
=
18
Combine Terms:
Combine like terms to solve for
x
x
x
.
−
4
x
+
7
x
=
3
x
\,-4x + 7x = 3x
−
4
x
+
7
x
=
3
x
3
x
=
18
\,3x = 18
3
x
=
18
Solve for x:
Divide both sides by
3
3
3
to find the value of x.
\newline
3
x
3
=
18
3
\frac{3x}{3} = \frac{18}{3}
3
3
x
=
3
18
\newline
x
=
6
x = 6
x
=
6
Substitute
x
x
x
:
Substitute
x
=
6
x = 6
x
=
6
into one of the original equations to solve for
y
y
y
. We'll use the first equation.
\newline
−
4
(
6
)
+
6
y
=
6
-4(6) + 6y = 6
−
4
(
6
)
+
6
y
=
6
\newline
−
24
+
6
y
=
6
-24 + 6y = 6
−
24
+
6
y
=
6
Isolate
y
y
y
:
Add
24
24
24
to both sides to isolate the
y
y
y
term.
\newline
6
y
=
6
+
24
6y = 6 + 24
6
y
=
6
+
24
\newline
6
y
=
30
6y = 30
6
y
=
30
Solve for y:
Divide both sides by
6
6
6
to find the value of y.
\newline
6
y
6
=
30
6
\frac{6y}{6} = \frac{30}{6}
6
6
y
=
6
30
\newline
y
=
5
y = 5
y
=
5
More problems from Solve a system of equations using elimination
Question
Anna does sit-ups to get ready for her first triathlon. When she starts, she does a sit-up every
2
2
2
seconds. But, as she gets tired, each sit-up takes longer and longer to do.
\newline
Is the number of sit-ups Anna does proportional to the time she spends doing them?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
y
=
−
8
x
−
3
y=-8 x-3
y
=
−
8
x
−
3
\newline
x
+
y
=
7
x+y=7
x
+
y
=
7
\newline
Is
(
3
,
4
)
(3,4)
(
3
,
4
)
a solution of the system?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
What is the result of subtracting the second equation from the first?
\newline
−
2
x
+
y
=
0
-2 x+y=0
−
2
x
+
y
=
0
\newline
−
7
x
+
3
y
=
2
-7 x+3 y=2
−
7
x
+
3
y
=
2
\newline
□
\square
□
Get tutor help
Posted 9 months ago
Question
What is the result of subtracting the second equation from the first?
\newline
2
x
+
7
y
=
−
8
2
x
−
5
y
=
−
1
\begin{array}{l} 2 x+7 y=-8 \\ 2 x-5 y=-1 \end{array}
2
x
+
7
y
=
−
8
2
x
−
5
y
=
−
1
\newline
□
\square
□
Get tutor help
Posted 9 months ago
Question
What is the result of adding these two equations?
\newline
5
x
−
y
=
6
5 x-y=6
5
x
−
y
=
6
\newline
−
2
x
+
y
=
8
-2 x+y=8
−
2
x
+
y
=
8
\newline
□
\square
□
Get tutor help
Posted 9 months ago
Question
Could
13.5
c
m
,
8.0
c
m
13.5 \mathrm{~cm}, 8.0 \mathrm{~cm}
13.5
cm
,
8.0
cm
, and
3.5
c
m
3.5 \mathrm{~cm}
3.5
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Could
10.7
c
m
,
3.2
c
m
10.7 \mathrm{~cm}, 3.2 \mathrm{~cm}
10.7
cm
,
3.2
cm
, and
5.5
c
m
5.5 \mathrm{~cm}
5.5
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Could
7.7
c
m
,
4.0
c
m
7.7 \mathrm{~cm}, 4.0 \mathrm{~cm}
7.7
cm
,
4.0
cm
, and
1.7
c
m
1.7 \mathrm{~cm}
1.7
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Could
10.6
c
m
,
5.6
c
m
10.6 \mathrm{~cm}, 5.6 \mathrm{~cm}
10.6
cm
,
5.6
cm
, and
4.0
c
m
4.0 \mathrm{~cm}
4.0
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Question
Could
10.5
c
m
,
8.0
c
m
10.5 \mathrm{~cm}, 8.0 \mathrm{~cm}
10.5
cm
,
8.0
cm
, and
4.0
c
m
4.0 \mathrm{~cm}
4.0
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant