Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
What is the result of adding these two equations?
\newline
5
x
−
y
=
6
5 x-y=6
5
x
−
y
=
6
\newline
−
2
x
+
y
=
8
-2 x+y=8
−
2
x
+
y
=
8
\newline
□
\square
□
View step-by-step help
Home
Math Problems
Algebra 2
Solve a system of equations using elimination
Full solution
Q.
What is the result of adding these two equations?
\newline
5
x
−
y
=
6
5 x-y=6
5
x
−
y
=
6
\newline
−
2
x
+
y
=
8
-2 x+y=8
−
2
x
+
y
=
8
\newline
□
\square
□
Write Equations:
Write down the equations to be added.
\newline
5
x
−
y
=
6
5x - y = 6
5
x
−
y
=
6
\newline
−
2
x
+
y
=
8
-2x + y = 8
−
2
x
+
y
=
8
Add Equations:
Add the equations together to combine like terms.
\newline
(
5
x
−
y
)
+
(
−
2
x
+
y
)
=
6
+
8
(5x - y) + (-2x + y) = 6 + 8
(
5
x
−
y
)
+
(
−
2
x
+
y
)
=
6
+
8
\newline
5
x
−
y
−
2
x
+
y
=
14
5x - y - 2x + y = 14
5
x
−
y
−
2
x
+
y
=
14
Combine Like Terms:
Simplify the equation by combining like terms.
\newline
5
x
−
2
x
=
3
x
5x - 2x = 3x
5
x
−
2
x
=
3
x
\newline
−
y
+
y
=
0
-y + y = 0
−
y
+
y
=
0
\newline
Therefore,
3
x
=
14
3x = 14
3
x
=
14
Final Equation:
Write the final simplified equation.
\newline
3
x
=
14
3x = 14
3
x
=
14
More problems from Solve a system of equations using elimination
Question
Anna does sit-ups to get ready for her first triathlon. When she starts, she does a sit-up every
2
2
2
seconds. But, as she gets tired, each sit-up takes longer and longer to do.
\newline
Is the number of sit-ups Anna does proportional to the time she spends doing them?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
y
=
−
8
x
−
3
y=-8 x-3
y
=
−
8
x
−
3
\newline
x
+
y
=
7
x+y=7
x
+
y
=
7
\newline
Is
(
3
,
4
)
(3,4)
(
3
,
4
)
a solution of the system?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
What is the result of subtracting the second equation from the first?
\newline
−
2
x
+
y
=
0
-2 x+y=0
−
2
x
+
y
=
0
\newline
−
7
x
+
3
y
=
2
-7 x+3 y=2
−
7
x
+
3
y
=
2
\newline
□
\square
□
Get tutor help
Posted 11 months ago
Question
What is the result of subtracting the second equation from the first?
\newline
2
x
+
7
y
=
−
8
2
x
−
5
y
=
−
1
\begin{array}{l} 2 x+7 y=-8 \\ 2 x-5 y=-1 \end{array}
2
x
+
7
y
=
−
8
2
x
−
5
y
=
−
1
\newline
□
\square
□
Get tutor help
Posted 11 months ago
Question
Could
13.5
c
m
,
8.0
c
m
13.5 \mathrm{~cm}, 8.0 \mathrm{~cm}
13.5
cm
,
8.0
cm
, and
3.5
c
m
3.5 \mathrm{~cm}
3.5
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
Could
10.7
c
m
,
3.2
c
m
10.7 \mathrm{~cm}, 3.2 \mathrm{~cm}
10.7
cm
,
3.2
cm
, and
5.5
c
m
5.5 \mathrm{~cm}
5.5
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
Could
7.7
c
m
,
4.0
c
m
7.7 \mathrm{~cm}, 4.0 \mathrm{~cm}
7.7
cm
,
4.0
cm
, and
1.7
c
m
1.7 \mathrm{~cm}
1.7
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
Could
10.6
c
m
,
5.6
c
m
10.6 \mathrm{~cm}, 5.6 \mathrm{~cm}
10.6
cm
,
5.6
cm
, and
4.0
c
m
4.0 \mathrm{~cm}
4.0
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
Could
10.5
c
m
,
8.0
c
m
10.5 \mathrm{~cm}, 8.0 \mathrm{~cm}
10.5
cm
,
8.0
cm
, and
4.0
c
m
4.0 \mathrm{~cm}
4.0
cm
be the side lengths of a triangle?
\newline
Choose
1
1
1
answer:
\newline
(A) Yes
\newline
(B) No
Get tutor help
Posted 11 months ago
Question
You pick a card at random, put it back, and then pick another card at random.
\newline
4
4
4
\newline
5
5
5
\newline
6
6
6
\newline
7
7
7
\newline
What is the probability of picking a number greater than
5
5
5
and then picking a
4
4
4
?
\newline
Write your answer as a percentage.
Get tutor help
Posted 3 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant