Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=((xy)^(2))/(8)+y^(2)
Choose 1 answer:
(A) 
y=-(x^(2)+16)/(16+C)
(B) 
y=-(16)/(x^(2)+16+C)
(C) 
y=-(x^(3)+24 x)/(24+C)
(D) 
y=-(24)/(x^(3)+24 x+C)

Solve the equation.\newlinedydx=(xy)28+y2 \frac{d y}{d x}=\frac{(x y)^{2}}{8}+y^{2} \newlineChoose 11 answer:\newline(A) y=x2+1616+C y=-\frac{x^{2}+16}{16+C} \newline(B) y=16x2+16+C y=-\frac{16}{x^{2}+16+C} \newline(C) y=x3+24x24+C y=-\frac{x^{3}+24 x}{24+C} \newline(D) y=24x3+24x+C y=-\frac{24}{x^{3}+24 x+C}

Full solution

Q. Solve the equation.\newlinedydx=(xy)28+y2 \frac{d y}{d x}=\frac{(x y)^{2}}{8}+y^{2} \newlineChoose 11 answer:\newline(A) y=x2+1616+C y=-\frac{x^{2}+16}{16+C} \newline(B) y=16x2+16+C y=-\frac{16}{x^{2}+16+C} \newline(C) y=x3+24x24+C y=-\frac{x^{3}+24 x}{24+C} \newline(D) y=24x3+24x+C y=-\frac{24}{x^{3}+24 x+C}
  1. Identify Equation Type: This is a first-order non-linear ordinary differential equation. To solve it, we will try to separate the variables xx and yy if possible.
  2. Rewrite Equation: First, let's rewrite the equation to make it clearer:\newlinedydx=x2y28+y2\frac{dy}{dx} = \frac{x^2 y^2}{8} + y^2
  3. Separate Variables: Now, we attempt to separate the variables by factoring out y2y^2 on the right side:\newlinedydx=y2(x28+1)\frac{dy}{dx} = y^2 \left(\frac{x^2}{8} + 1\right)
  4. Integrate Both Sides: Next, we divide both sides by y2y^2 and multiply by dxdx to get:\newlinedyy2=(x28+1)dx\frac{dy}{y^2} = \left(\frac{x^2}{8} + 1\right) dx
  5. Solve for y: Now we integrate both sides of the equation. On the left side, we integrate with respect to yy, and on the right side, we integrate with respect to xx:(1y2)dy=(x28+1)dx\int(\frac{1}{y^2}) \, dy = \int(\frac{x^2}{8} + 1) \, dx
  6. Simplify Expression: The integral of 1y2\frac{1}{y^2} with respect to yy is 1y-\frac{1}{y}. The integral of x28\frac{x^2}{8} with respect to xx is x324\frac{x^3}{24}, and the integral of 11 with respect to xx is xx. So we have:\newline1y=x324+x+C-\frac{1}{y} = \frac{x^3}{24} + x + C, where yy00 is the constant of integration.
  7. Replace Constant: We solve for yy by taking the reciprocal of both sides and multiplying by 1-1:y=1(x324+x+C)y = -\frac{1}{\left(\frac{x^3}{24} + x + C\right)}
  8. Final Solution: We can simplify the expression by multiplying the numerator and denominator by 2424 to clear the fraction in the denominator:\newliney=24x3+24x+24Cy = -\frac{24}{x^3 + 24x + 24C}
  9. Final Solution: We can simplify the expression by multiplying the numerator and denominator by 2424 to clear the fraction in the denominator:\newliney=24x3+24x+24Cy = -\frac{24}{x^3 + 24x + 24C}We can replace 24C24C with a new constant, let's call it CC', since it is still an arbitrary constant:\newliney=24x3+24x+Cy = -\frac{24}{x^3 + 24x + C'}
  10. Final Solution: We can simplify the expression by multiplying the numerator and denominator by 2424 to clear the fraction in the denominator:\newliney=24x3+24x+24Cy = -\frac{24}{x^3 + 24x + 24C} We can replace 24C24C with a new constant, let's call it CC', since it is still an arbitrary constant:\newliney=24x3+24x+Cy = -\frac{24}{x^3 + 24x + C'} This matches answer choice (D)(D), so the solution to the differential equation is:\newliney=24x3+24x+Cy = -\frac{24}{x^3 + 24x + C'}

More problems from Find derivatives of using multiple formulae