Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=(x)/(sin(y))-(9)/(sin(y))
Choose 1 answer:
(A) 
y=arccos(-(x^(2))/(2)+9x+C)
(B) 
y=arccos(-(x^(2))/(2)+9x)+C
(C) 
y=(2)/(cos(-x^(2)+18 x+C))
(D) 
y=(2C)/(cos(-x^(2)+18 x))

Solve the equation.\newlinedydx=xsin(y)9sin(y) \frac{d y}{d x}=\frac{x}{\sin (y)}-\frac{9}{\sin (y)} \newlineChoose 11 answer:\newline(A) y=arccos(x22+9x+C) y=\arccos \left(-\frac{x^{2}}{2}+9 x+C\right) \newline(B) y=arccos(x22+9x)+C y=\arccos \left(-\frac{x^{2}}{2}+9 x\right)+C \newline(C) y=2cos(x2+18x+C) y=\frac{2}{\cos \left(-x^{2}+18 x+C\right)} \newline(D) y=2Ccos(x2+18x) y=\frac{2 C}{\cos \left(-x^{2}+18 x\right)}

Full solution

Q. Solve the equation.\newlinedydx=xsin(y)9sin(y) \frac{d y}{d x}=\frac{x}{\sin (y)}-\frac{9}{\sin (y)} \newlineChoose 11 answer:\newline(A) y=arccos(x22+9x+C) y=\arccos \left(-\frac{x^{2}}{2}+9 x+C\right) \newline(B) y=arccos(x22+9x)+C y=\arccos \left(-\frac{x^{2}}{2}+9 x\right)+C \newline(C) y=2cos(x2+18x+C) y=\frac{2}{\cos \left(-x^{2}+18 x+C\right)} \newline(D) y=2Ccos(x2+18x) y=\frac{2 C}{\cos \left(-x^{2}+18 x\right)}
  1. Simplify the equation: First, we need to simplify the right-hand side of the differential equation by combining the terms over a common denominator.\newlinedydx=xsin(y)9sin(y)\frac{dy}{dx} = \frac{x}{\sin(y)} - \frac{9}{\sin(y)}\newlinedydx=x9sin(y)\frac{dy}{dx} = \frac{x - 9}{\sin(y)}
  2. Separate variables: Next, we separate the variables xx and yy to different sides of the equation to prepare for integration.sin(y)dy=(x9)dx\sin(y) \, dy = (x - 9) \, dx
  3. Integrate both sides: Now, we integrate both sides of the equation with respect to their respective variables.\newlinesin(y)dy=(x9)dx\int \sin(y) \, dy = \int (x - 9) \, dx
  4. Solve for yy: The integral of sin(y)\sin(y) with respect to yy is cos(y)-\cos(y), and the integral of (x9)(x - 9) with respect to xx is x229x\frac{x^2}{2} - 9x.\newlinecos(y)=x229x+C-\cos(y) = \frac{x^2}{2} - 9x + C, where CC is the constant of integration.
  5. Check solution: We solve for yy by taking the arccosine of both sides.y=arccos((x229x+C))y = \arccos\left(-\left(\frac{x^2}{2} - 9x + C\right)\right)
  6. Final answer: We need to check if the solution matches any of the given answer choices.\newlineThe correct answer choice that matches our solution is:\newline(B) y=arccos(x22+9x)+Cy = \arccos\left(-\frac{x^2}{2} + 9x\right) + C

More problems from Find derivatives of using multiple formulae