Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=(x)/(7cos(y))
Choose 1 answer:
(A) 
y=(cos(x)+x sin(x))/(7cos^(2)(x))+C
(B) 
y=arcsin((x^(2))/(14)+C)
(C) 
y=(cos(x)+x sin(x)+C)/(7cos^(2)(x))
(D) 
y=arcsin((x^(2))/(14))+C

Solve the equation.\newlinedydx=x7cos(y) \frac{d y}{d x}=\frac{x}{7 \cos (y)} \newlineChoose 11 answer:\newline(A) y=cos(x)+xsin(x)7cos2(x)+C y=\frac{\cos (x)+x \sin (x)}{7 \cos ^{2}(x)}+C \newline(B) y=arcsin(x214+C) y=\arcsin \left(\frac{x^{2}}{14}+C\right) \newline(C) y=cos(x)+xsin(x)+C7cos2(x) y=\frac{\cos (x)+x \sin (x)+C}{7 \cos ^{2}(x)} \newline(D) y=arcsin(x214)+C y=\arcsin \left(\frac{x^{2}}{14}\right)+C

Full solution

Q. Solve the equation.\newlinedydx=x7cos(y) \frac{d y}{d x}=\frac{x}{7 \cos (y)} \newlineChoose 11 answer:\newline(A) y=cos(x)+xsin(x)7cos2(x)+C y=\frac{\cos (x)+x \sin (x)}{7 \cos ^{2}(x)}+C \newline(B) y=arcsin(x214+C) y=\arcsin \left(\frac{x^{2}}{14}+C\right) \newline(C) y=cos(x)+xsin(x)+C7cos2(x) y=\frac{\cos (x)+x \sin (x)+C}{7 \cos ^{2}(x)} \newline(D) y=arcsin(x214)+C y=\arcsin \left(\frac{x^{2}}{14}\right)+C
  1. Recognize type of differential equation: Recognize the type of differential equation.\newlineThis is a first-order separable differential equation, which means we can separate the variables yy and xx on different sides of the equation.
  2. Separate the variables: Separate the variables.\newlineTo separate the variables, we multiply both sides by 7cos(y)dy7\cos(y)\,dy and divide by xdxx\,dx.\newline7cos(y)dy=x7cos(y)×7cos(y)dx7\cos(y)\,dy = \frac{x}{7\cos(y)} \times 7\cos(y)\,dx\newline7cos(y)dy=xdx7\cos(y)\,dy = x\,dx
  3. Integrate both sides: Integrate both sides.\newlineWe integrate the left side with respect to yy and the right side with respect to xx.\newline7cos(y)dy=xdx\int 7\cos(y)\,dy = \int x\,dx
  4. Perform the integration: Perform the integration.\newlineThe integral of 7cos(y)7\cos(y) with respect to yy is 7sin(y)7\sin(y), and the integral of xx with respect to xx is (1/2)x2(1/2)x^2.\newline7sin(y)=(1/2)x2+C7\sin(y) = (1/2)x^2 + C, where CC is the constant of integration.
  5. Solve for y: Solve for y.\newlineTo solve for y, we take the inverse sine (arcsin) of both sides.\newliney=arcsin(x214+C7)y = \arcsin\left(\frac{x^2}{14} + \frac{C}{7}\right)
  6. Match with given options: Match the solution with the given options.\newlineThe solution we found is y=arcsin(x214+C7)y = \arcsin\left(\frac{x^2}{14} + \frac{C}{7}\right), which is not exactly in the form of any of the given options. However, we can adjust the constant CC to absorb the 77 in the denominator, so we rewrite the solution as:\newliney=arcsin(x214+C)y = \arcsin\left(\frac{x^2}{14} + C\right)\newlineThis matches option (B).

More problems from Find derivatives of using multiple formulae