Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=-(x+6)/(7y^(2))
Choose 1 answer:
(A) 
y=+-sqrt(-(x+6)/(7)+C)
(B) 
y=Csqrt(-(x+6)/(7))
(C) 
y=Croot(3)(-(3x^(2))/(14)-(18 x)/(7))
(D) 
y=root(3)(-(3x^(2))/(14)-(18 x)/(7)+C)

Solve the equation.\newlinedydx=x+67y2 \frac{d y}{d x}=-\frac{x+6}{7 y^{2}} \newlineChoose 11 answer:\newline(A) y=±x+67+C y= \pm \sqrt{-\frac{x+6}{7}+C} \newline(B) y=Cx+67 y=C \sqrt{-\frac{x+6}{7}} \newline(C) y=C3x21418x73 y=C \sqrt[3]{-\frac{3 x^{2}}{14}-\frac{18 x}{7}} \newline(D) y=3x21418x7+C3 y=\sqrt[3]{-\frac{3 x^{2}}{14}-\frac{18 x}{7}+C}

Full solution

Q. Solve the equation.\newlinedydx=x+67y2 \frac{d y}{d x}=-\frac{x+6}{7 y^{2}} \newlineChoose 11 answer:\newline(A) y=±x+67+C y= \pm \sqrt{-\frac{x+6}{7}+C} \newline(B) y=Cx+67 y=C \sqrt{-\frac{x+6}{7}} \newline(C) y=C3x21418x73 y=C \sqrt[3]{-\frac{3 x^{2}}{14}-\frac{18 x}{7}} \newline(D) y=3x21418x7+C3 y=\sqrt[3]{-\frac{3 x^{2}}{14}-\frac{18 x}{7}+C}
  1. Separate variables: We are given the differential equation (dydx)=(x+6)7y2(\frac{dy}{dx}) = -\frac{(x+6)}{7y^2}. This is a separable differential equation, which means we can separate the variables yy and xx on different sides of the equation. To do this, we multiply both sides by 7y2dy7y^2 dy and dxdx to get 7y2dy=(x+6)dx7y^2 dy = -(x+6) dx.
  2. Integrate both sides: Next, we integrate both sides of the equation. The left side with respect to yy, and the right side with respect to xx. This gives us the integral of 7y2dy=7y^2 \, dy = integral of (x+6)dx- (x+6) \, dx.
  3. Combine constants: The integral of 7y2dy7y^2 \, dy is (73)y3+C1(\frac{7}{3})y^3 + C_1, where C1C_1 is the constant of integration. The integral of (x+6)dx-(x+6) \, dx is (12)x26x+C2-(\frac{1}{2})x^2 - 6x + C_2, where C2C_2 is another constant of integration.
  4. Solve for yy: Since the constants of integration on both sides of the equation are arbitrary, we can combine them into a single constant CC. Therefore, we have 73y3=12x26x+C\frac{7}{3}y^3 = -\frac{1}{2}x^2 - 6x + C.
  5. Final solution: To solve for yy, we divide both sides by (7/3)(7/3) to get y3=(12x2+6x)/(7/3)+C(7/3)y^3 = -\left(\frac{1}{2}x^2 + 6x\right)/(7/3) + \frac{C}{(7/3)}. Simplifying the right side, we get y3=(314)x2(187)x+C(7/3)y^3 = -\left(\frac{3}{14}\right)x^2 - \left(\frac{18}{7}\right)x + \frac{C}{(7/3)}.
  6. Final solution: To solve for yy, we divide both sides by (7/3)(7/3) to get y3=(12x2+6x)/(7/3)+C(7/3)y^3 = -\left(\frac{1}{2}x^2 + 6x\right)/(7/3) + \frac{C}{(7/3)}. Simplifying the right side, we get y3=(314)x2(187)x+C(7/3)y^3 = -\left(\frac{3}{14}\right)x^2 - \left(\frac{18}{7}\right)x + \frac{C}{(7/3)}.Taking the cube root of both sides to solve for yy, we get y=cube root of ((314)x2(187)x+C(7/3))y = \text{cube root of } \left(-\left(\frac{3}{14}\right)x^2 - \left(\frac{18}{7}\right)x + \frac{C}{(7/3)}\right). This matches answer choice (D) if we consider the constant C(7/3)\frac{C}{(7/3)} as a new constant CC'.

More problems from Find derivatives of using multiple formulae