Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=(x^(2))/(6e^(y))
Choose 1 answer:
(A) 
y=+-sqrt(-2e^(-x)+C)+10
(B) 
y=+-sqrt(-2e^(-x))+C
(C) 
y=ln((x^(3))/(18)+C)
(D) 
y=ln((x^(3))/(18))+C

Solve the equation.\newlinedydx=x26ey \frac{d y}{d x}=\frac{x^{2}}{6 e^{y}} \newlineChoose 11 answer:\newline(A) y=±2ex+C+10 y= \pm \sqrt{-2 e^{-x}+C}+10 \newline(B) y=±2ex+C y= \pm \sqrt{-2 e^{-x}}+C \newline(C) y=ln(x318+C) y=\ln \left(\frac{x^{3}}{18}+C\right) \newline(D) y=ln(x318)+C y=\ln \left(\frac{x^{3}}{18}\right)+C

Full solution

Q. Solve the equation.\newlinedydx=x26ey \frac{d y}{d x}=\frac{x^{2}}{6 e^{y}} \newlineChoose 11 answer:\newline(A) y=±2ex+C+10 y= \pm \sqrt{-2 e^{-x}+C}+10 \newline(B) y=±2ex+C y= \pm \sqrt{-2 e^{-x}}+C \newline(C) y=ln(x318+C) y=\ln \left(\frac{x^{3}}{18}+C\right) \newline(D) y=ln(x318)+C y=\ln \left(\frac{x^{3}}{18}\right)+C
  1. Separate variables: We are given the differential equation dydx=x26ey\frac{dy}{dx}=\frac{x^{2}}{6e^{y}}. This is a separable differential equation, which means we can separate the variables yy and xx on different sides of the equation. Let's do that.
  2. Isolate dydy term: Multiply both sides by 6ey6e^{y} to get 6eydydx=x26e^{y} \cdot \frac{dy}{dx} = x^{2}. This isolates the dydy term on the left side.
  3. Divide by x2x^2: Now, divide both sides by x(2)x^{(2)} to get 6eydydx1x2=16e^{y} \cdot \frac{dy}{dx} \cdot \frac{1}{x^{2}} = 1. This isolates the dxdx term on the right side.
  4. Integrate with respect: We can now integrate both sides with respect to their respective variables. The left side with respect to yy and the right side with respect to xx. So we have 6eydy=(1x2)dx\int 6e^{y} \, dy = \int \left(\frac{1}{x^{2}}\right) dx.
  5. Solve for eye^y: The integral of 6ey6e^{y} with respect to yy is 6ey6e^{y}, and the integral of (1/x2)(1/x^{2}) with respect to xx is 1/x-1/x. So we have 6ey=1/x+C6e^{y} = -1/x + C, where CC is the constant of integration.
  6. Take natural logarithm: Now, we divide both sides by 66 to solve for eye^{y}. This gives us ey=16x+C6e^{y} = \frac{-1}{6x} + \frac{C}{6}.
  7. Correct constant of integration: To solve for yy, we take the natural logarithm (ln) of both sides. This gives us y=ln((16x)+C6)y = \ln(\left(-\frac{1}{6x}\right) + \frac{C}{6}).
  8. Correct constant of integration: To solve for yy, we take the natural logarithm (ln) of both sides. This gives us y=ln(16x+C6)y = \ln(\frac{-1}{6x} + \frac{C}{6}).However, there is a mistake in the previous step. The constant of integration should be a separate term, not divided by 66. We should have ey=16x+Ce^{y} = \frac{-1}{6x} + C, and then take the natural logarithm of both sides to get y=ln(16x+C)y = \ln(\frac{-1}{6x} + C).

More problems from Find derivatives of using multiple formulae