Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=-(e^(x)y^(2))/(10)
Choose 1 answer:
(A) 
y=(10)/(e^(x))+C
(B) 
y=(10)/(e^(x)+C)
(C) 
y=(10)/(Ce^(x))
(D) 
y=(10+C)/(e^(x))

Solve the equation.\newlinedydx=exy210 \frac{d y}{d x}=-\frac{e^{x} y^{2}}{10} \newlineChoose 11 answer:\newline(A) y=10ex+C y=\frac{10}{e^{x}}+C \newline(B) y=10ex+C y=\frac{10}{e^{x}+C} \newline(C) y=10Cex y=\frac{10}{C e^{x}} \newline(D) y=10+Cex y=\frac{10+C}{e^{x}}

Full solution

Q. Solve the equation.\newlinedydx=exy210 \frac{d y}{d x}=-\frac{e^{x} y^{2}}{10} \newlineChoose 11 answer:\newline(A) y=10ex+C y=\frac{10}{e^{x}}+C \newline(B) y=10ex+C y=\frac{10}{e^{x}+C} \newline(C) y=10Cex y=\frac{10}{C e^{x}} \newline(D) y=10+Cex y=\frac{10+C}{e^{x}}
  1. Separate variables: This is a first-order separable differential equation. To solve it, we need to separate the variables yy and xx on different sides of the equation.\newlinedydx=exy210\frac{dy}{dx} = -\frac{e^{x}y^{2}}{10}\newlineWe can rewrite this as:\newlinedyy2=ex10dx\frac{dy}{y^2} = -\frac{e^{x}}{10}dx
  2. Integrate both sides: Now we integrate both sides of the equation with respect to their variables.\newline(1y2)dy=(ex10)dx\int(\frac{1}{y^2})dy = -\int(\frac{e^{x}}{10})dx
  3. Apply constant of integration: The integral of 1y2\frac{1}{y^2} with respect to yy is 1y-\frac{1}{y}, and the integral of ex10\frac{e^{x}}{10} with respect to xx is (110)ex\left(\frac{1}{10}\right)e^{x}.\newline1y=(110)ex+C-\frac{1}{y} = -\left(\frac{1}{10}\right)e^{x} + C, where CC is the constant of integration.
  4. Take reciprocal: We multiply both sides by 1-1 to get rid of the negative sign on the left side.\newline1y=110exC\frac{1}{y} = \frac{1}{10}e^{x} - C
  5. Simplify expression: Now we take the reciprocal of both sides to solve for yy.y=1(110exC)y = \frac{1}{\left(\frac{1}{10}e^{x} - C\right)}
  6. Compare with options: To simplify the expression, we can multiply the numerator and denominator by 1010.y=10ex10Cy = \frac{10}{e^{x} - 10C}We can rename the constant 10C-10C to a new constant CC' for simplicity.y=10ex+Cy = \frac{10}{e^{x} + C'}
  7. Compare with options: To simplify the expression, we can multiply the numerator and denominator by 1010. \newliney=10ex10Cy = \frac{10}{e^{x} - 10C}\newlineWe can rename the constant 10C-10C to a new constant CC' for simplicity.\newliney=10ex+Cy = \frac{10}{e^{x} + C'}We compare the final expression with the given options.\newlineThe correct answer is (B) y=10ex+Cy=\frac{10}{e^{x}+C}.

More problems from Find derivatives of using multiple formulae