Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=(cos(x))/(sin(y))
Choose 1 answer:
(A) 
y=arcsin(-sin(x))+C
(B) 
y=arcsin(-sin(x)+C)
(C) 
y=arccos(-sin(x))+C
(D) 
y=arccos(-sin(x)+C)

Solve the equation.\newlinedydx=cos(x)sin(y) \frac{d y}{d x}=\frac{\cos (x)}{\sin (y)} \newlineChoose 11 answer:\newline(A) y=arcsin(sin(x))+C y=\arcsin (-\sin (x))+C \newline(B) y=arcsin(sin(x)+C) y=\arcsin (-\sin (x)+C) \newline(C) y=arccos(sin(x))+C y=\arccos (-\sin (x))+C \newline(D) y=arccos(sin(x)+C) y=\arccos (-\sin (x)+C)

Full solution

Q. Solve the equation.\newlinedydx=cos(x)sin(y) \frac{d y}{d x}=\frac{\cos (x)}{\sin (y)} \newlineChoose 11 answer:\newline(A) y=arcsin(sin(x))+C y=\arcsin (-\sin (x))+C \newline(B) y=arcsin(sin(x)+C) y=\arcsin (-\sin (x)+C) \newline(C) y=arccos(sin(x))+C y=\arccos (-\sin (x))+C \newline(D) y=arccos(sin(x)+C) y=\arccos (-\sin (x)+C)
  1. Rewrite equation: We rewrite the equation as sin(y)dy=cos(x)dx\sin(y) \, dy = \cos(x) \, dx. Now we can integrate both sides: sin(y)dy=cos(x)dx\int \sin(y) \, dy = \int \cos(x) \, dx.
  2. Integrate both sides: The integral of sin(y)dy\sin(y) \, dy is cos(y)-\cos(y), and the integral of cos(x)dx\cos(x) \, dx is sin(x)\sin(x). So we have cos(y)=sin(x)+C-\cos(y) = \sin(x) + C, where CC is the constant of integration. To solve for yy, we take the arccosine of both sides: y=arccos(sin(x)+C)y = \arccos(-\sin(x) + C). However, since the range of arccos is [0,π][0, \pi], and the range of arcsin is [π/2,π/2][-\pi/2, \pi/2], we should use arcsin to get the general solution. Therefore, we rewrite the equation as cos(y)-\cos(y)00.

More problems from Find derivatives of inverse trigonometric functions