Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=4ye^(x)
Choose 1 answer:
(A) 
y=e^(Ce^(x))
(B) 
y=e^(e^(x)+C)
(C) 
y=e^(4e^(x))+C
(D) 
y=Ce^(4e^(x))

Solve the equation.\newlinedydx=4yex \frac{d y}{d x}=4 y e^{x} \newlineChoose 11 answer:\newline(A) y=eCex y=e^{C e^{x}} \newline(B) y=eex+C y=e^{e^{x}+C} \newline(C) y=e4ex+C y=e^{4 e^{x}}+C \newline(D) y=Ce4ex y=C e^{4 e^{x}}

Full solution

Q. Solve the equation.\newlinedydx=4yex \frac{d y}{d x}=4 y e^{x} \newlineChoose 11 answer:\newline(A) y=eCex y=e^{C e^{x}} \newline(B) y=eex+C y=e^{e^{x}+C} \newline(C) y=e4ex+C y=e^{4 e^{x}}+C \newline(D) y=Ce4ex y=C e^{4 e^{x}}
  1. Recognize the equation type: Recognize that the given differential equation dydx=4yex\frac{dy}{dx}=4ye^{x} is a first-order linear differential equation that can be solved using the method of separation of variables.
  2. Separate variables: Separate the variables by dividing both sides by yy and multiplying both sides by dxdx to get 1y\frac{1}{y}dydy = 4ex4e^{x}dxdx.
  3. Integrate both sides: Integrate both sides of the equation. The left side with respect to yy and the right side with respect to xx.(1y)dy=4e(x)dx\int(\frac{1}{y})dy = \int 4e^{(x)}dx
  4. Perform integration: Perform the integration on both sides.\newlineThe integral of 1y\frac{1}{y}dydy is lny\ln|y|, and the integral of 4ex4e^{x}dxdx is 4ex4e^{x}.\newlinelny=4ex+C\ln|y| = 4e^{x} + C, where CC is the constant of integration.
  5. Solve for yy: Solve for yy by exponentiating both sides to eliminate the natural logarithm.\newlinee(lny)=e(4e(x)+C)e^{(\ln|y|)} = e^{(4e^{(x)} + C)}\newliney=e(4e(x))e(C)|y| = e^{(4e^{(x)})} \cdot e^{(C)}
  6. Exponentiate both sides: Since eCe^{C} is just another constant, we can rename it as CC' (C prime) for simplicity.y=Ce4ex|y| = C'e^{4e^{x}}
  7. Remove absolute value: Remove the absolute value by considering that yy can be either positive or negative, so y=±Ce4exy = \pm C'e^{4e^{x}}. However, since CC' can absorb the negative sign, we can write y=Ce4exy = C'e^{4e^{x}}.
  8. Match with answer choices: Match the solution to the given answer choices.\newlineThe correct answer choice that matches y=Ce4exy = C'e^{4e^{x}} is (D) y=Ce4exy=Ce^{4e^{x}}.

More problems from Find derivatives of using multiple formulae